Skip to main content

Gene Expression in Citrus Plant Cells Using Helios® Gene Gun System for Particle Bombardment

  • Protocol
  • First Online:
Citrus Tristeza Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2015))

Abstract

To understand how Citrus tristeza virus (CTV) replicates and moves inside the plant, it is critical to study the cellular interactions and localization of its encoded proteins. However, due to technical limitations, so far these studies have been limited to the nonnatural host Nicotiana benthamiana.

Particle bombardment is a physical method to deliver nucleic acid and other biomolecules into the cells directly. The Helios® gene gun (Bio-Rad, Hercules, CA) is a handheld device that uses a low-pressure helium pulse to accelerate high-density, subcellular-sized particles into a wide variety of targets for in vivo and in vitro applications. Here, we describe a detail protocol for either transient or stable gene expression in citrus leaf cells using this gene gun. This protocol can be used to study protein-protein interactions and subcellular localization in different kinds of plant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dolja VV, Kreuze JF, Valkonen JPT (2006) Comparative and functional genomics of closteroviruses. Virus Res 117:38–51

    Article  CAS  Google Scholar 

  2. Satyanarayana T, Gowda S, Ayllón MA et al (2003) Closterovirus bipolar virion: evidence for initiation of assembly by minor coat protein and its restriction to the genomic RNA5´ region. PNAS 101(3):799–804

    Article  Google Scholar 

  3. Moreno P, Ambrós S, Albiach-Martí MR et al (2008) Citrus triseza virus: a pathogen that changed the course of the citrus industry. Mol Plant Pathol 9(2):251–268

    Article  CAS  Google Scholar 

  4. Bak A, Folimonova SY (2015) The conundrum of a unique protein encoded by citrus tristeza virus that is dispensable for infection of most hosts yet shows characteristics of a viral movement protein. Virology 485:86–95

    Article  CAS  Google Scholar 

  5. Kang S-H, Dao TNM, Kim O-K et al (2017) Self-interaction of Citrus tristeza virus p33 protein via N-terminal helix. Virus Res 233:29–34

    Article  CAS  Google Scholar 

  6. Ruiz-Ruiz S, Soler N, Sánchez-Navarro J et al (2013) Citrus tristeza virus p23: determinants for nucleolar localization and their influence on suppression of RNA silencing and phatogenesis. Mol Plant-Microbe Interact 26(3):306–318

    Article  CAS  Google Scholar 

  7. Klein TM, Wolf ED, Wu R et al (1987) High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327:70–73

    Article  CAS  Google Scholar 

  8. Klein TM, Fromm M, Weissinger A et al (1988) Transfer of foreign genes into intact maize cells with high-velocity microprojectiles. Proc Natl Acad Sci U S A 85:4305–4309

    Article  CAS  Google Scholar 

  9. McCabe DE, Swain WF, Martinell BJ et al (1988) Stable transformation of soy bean (Glycine max) by particle acceleration. Nat Biotechnol 6:923–926

    Article  Google Scholar 

  10. Yang NS, Burkholder J, Roberts B et al (1990) In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment. Proc Natl Acad Sci U S A 87:9568–9572

    Article  CAS  Google Scholar 

  11. Smith FD, Harpending PR, Sanford JC (1992) Biolistic transformation of prokaryotes: factors that affect biolistic transformation of very small cells. J Gen Microbiol 138:239–248

    Article  CAS  Google Scholar 

  12. Armaleo D, Ye G-N, Klein TM et al (1990) Biolistic nuclear transformation of Saccharomyces cerevisiae and other fungi. Curr Genet 17:97–103

    Article  CAS  Google Scholar 

  13. O’Brien JA, Lummis SCR (2009) Biolistic transfection of neuronal cultures using a hand-held gene gun. Nat Protoc 1(2):977–981

    Article  Google Scholar 

  14. Belyantseva IA (2016) Helios® gene gun-mediated transfection of the inner ear sensory epithelium: recent updates. In: Sokolowski B (ed) Auditory and vestibular research, Methods in molecular biology, vol 1427. Humana Press, New York, NY

    Chapter  Google Scholar 

  15. Carsono N, Yoshida T (2008) Transient expression of green florescent protein in rice calluses: optimization of parameters for Helios gene gun device. Plant Prod Sci 11:88–95

    Article  CAS  Google Scholar 

  16. Kuriakose B, Du Toit ES, Jordaan A (2012) Transient gene expression assays in rose tissues using a bio-rad Helios® hand-held gene gun. S Afr J Bot 78:307–311

    Article  CAS  Google Scholar 

  17. Ueki S, Magori S, Lacroix B et al (2013) Transient gene expression in epidermal cells of plant leaves by biolistic DNA delivery. Methods Mol Biol 940:17–26

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Yamagishi N, Terauchi H, Kanematsu S et al (2006) Biolistic inoculation of soybean plants with soybean dwarf virus. J Virol Methods 137:164–167

    Article  CAS  Google Scholar 

  19. Levy A, El Mochtar C, Wang C et al (2018) A new toolset for protein expression and subcellular localization studies in citrus and its application to Citrus tristeza virus proteins. Plant Methods 14:2

    Article  Google Scholar 

Download references

Acknowledgments

Support for this work was provided by the Specialty Crop Research Initiative (SCRI) Citrus Disease Research and Extension Program (CDRE) grant number P0066064 and by the Florida State legislative funding for the UF/IFAS Citrus Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Levy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Acanda, Y., Wang, C., Levy, A. (2019). Gene Expression in Citrus Plant Cells Using Helios® Gene Gun System for Particle Bombardment. In: Catara, A., Bar-Joseph, M., Licciardello, G. (eds) Citrus Tristeza Virus. Methods in Molecular Biology, vol 2015. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9558-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9558-5_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9557-8

  • Online ISBN: 978-1-4939-9558-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics