Skip to main content

Preparation of Pulmonary Artery Myocytes and Rings to Study Vasoactive GPCRs

  • Protocol
  • First Online:
G Protein-Coupled Receptor Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1947))

Abstract

G protein-coupled receptors (GPCR) are crucial transducers of extracellular signals into changes in vascular tone. Vasoactive GPCR stimulation in the pulmonary circuit may be elicited by agonists released in acute tissue hypoxia or inflammation, as well as chronic disease. Acute responses involve activation of smooth muscle contraction or relaxation machinery causing changes in actomyosin interaction, thereby altering lumen diameter. Chronic responses may typically include activation of proliferation or fibrosis. Using pulmonary artery myocytes and pulmonary artery rings, we describe a general strategy for quantification of vasoconstrictor or vasodilator GPCR responses, and for comparison of signaling pathways in cultured cells and in contracted vessels using immunohistochemistry of contracting vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iyinikkel J, Murray F (2018) Gpcrs in pulmonary arterial hypertension: tipping the balance. Br J Pharmacol 175(15):3063–3079

    Article  CAS  Google Scholar 

  2. Jeffery TK, Morrell NW (2002) Molecular and cellular basis of pulmonary vascular remodeling in pulmonary hypertension. Prog Cardiovasc Dis 45(3):173–202

    Article  CAS  Google Scholar 

  3. Insel PA, Wilderman A, Zambon AC, Snead AN, Murray F, Aroonsakool N, McDonald DS, Zhou S, McCann T, Zhang L et al (2015) G protein-coupled receptor (gpcr) expression in native cells: "novel" endogpcrs as physiologic regulators and therapeutic targets. Mol Pharmacol 88(1):181–187

    Article  CAS  Google Scholar 

  4. Shimoda LA, Sham JS, Sylvester JT (2000) Altered pulmonary vasoreactivity in the chronically hypoxic lung. Physiol Res 49(5):549–560

    CAS  PubMed  Google Scholar 

  5. Insel PA, Snead A, Murray F, Zhang L, Yokouchi H, Katakia T, Kwon O, Dimucci D, Wilderman A (2012) Gpcr expression in tissues and cells: are the optimal receptors being used as drug targets? Br J Pharmacol 165(6):1613–1616

    Article  CAS  Google Scholar 

  6. Gao QB, Wang ZZ (2006) Classification of g-protein coupled receptors at four levels. Protein engineering, design & selection. PEDS 19(11):511–516

    CAS  PubMed  Google Scholar 

  7. Hu J, Xu Q, McTiernan C, Lai YC, Osei-Hwedieh D, Gladwin M (2015) Novel targets of drug treatment for pulmonary hypertension. Am J Cardiovasc Drugs 15(4):225–234

    Article  CAS  Google Scholar 

  8. Wang G, Jacquet L, Karamariti E, Xu Q (2015) Origin and differentiation of vascular smooth muscle cells. J Physiol 593(14):3013–3030

    Article  CAS  Google Scholar 

  9. Halayko AJ, Rector E, Stephens NL (1997) Characterization of molecular determinants of smooth muscle cell heterogeneity. Can J Physiol Pharmacol 75(7):917–929

    Article  CAS  Google Scholar 

  10. Postolow F, Fediuk J, Nolette N, Hinton M, Dakshinamurti S (2011) Hypoxia and nitric oxide exposure promote apoptotic signaling in contractile pulmonary arterial smooth muscle but not in pulmonary epithelium. Pediatr Pulmonol 46(12):1194–1208

    Article  CAS  Google Scholar 

  11. Fediuk J, Gutsol A, Nolette N, Dakshinamurti S (2012) Thromboxane-induced actin polymerization in hypoxic pulmonary artery is independent of rho. Am J Physiol Lung Cell Mol Physiol 302(1):L13–L26

    Article  CAS  Google Scholar 

  12. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260(6):3440–3450

    CAS  PubMed  Google Scholar 

  13. Spangler CM, Spangler C, Gottle M, Shen Y, Tang WJ, Seifert R, Schaferling M (2008) A fluorimetric assay for real-time monitoring of adenylyl cyclase activity based on terbium norfloxacin. Anal Biochem 381(1):86–93

    Article  CAS  Google Scholar 

  14. Pfaltzgraff ER, Bader DM (2015) Heterogeneity in vascular smooth muscle cell embryonic origin in relation to adult structure, physiology, and disease. Dev Dyn 244(3):410–416

    Article  Google Scholar 

Download references

Acknowledgments

Supported by a grant-in-aid from Heart and Stroke Foundation and a mid-career operating grant from Research Manitoba (SD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyamala Dakshinamurti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hinton, M., Sikarwar, A.S., Dakshinamurti, S. (2019). Preparation of Pulmonary Artery Myocytes and Rings to Study Vasoactive GPCRs. In: Tiberi, M. (eds) G Protein-Coupled Receptor Signaling. Methods in Molecular Biology, vol 1947. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9121-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9121-1_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9120-4

  • Online ISBN: 978-1-4939-9121-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics