Quantification of Recombinant Products in Yeast

  • Karola Vorauer-UhlEmail author
  • Gabriele Lhota
Part of the Methods in Molecular Biology book series (MIMB, volume 1923)


Quantification of various proteins expressed in yeast can be performed by different methods. In this respect, classical as well as advanced techniques can be applied, where the analysis of crude supernatants is of special interest in screening but also manufacturing.

The following chapter addresses the analytical background of the introduced methods followed by specific recommendations for the quantification of different products of industrial interest. The method portfolio includes electrophoresis, chromatography, and ELISA as classical techniques, but also biosensor-based, microfluidic and automated, miniaturized methods are introduced. Furthermore, individual strengths and perceived limitations are summarized.

Although prominent examples are described, it should be noted that individual modifications are required according to host and cultivation mode.

Key words

Protein quantification Electrophoresis HPLC ELISA Bio-layer interferometry Microfluidics CD technology Surface plasmon resonance Electrochemiluminescence assays Microchip-based assays 


  1. 1.
    Ahmad M, Hirz M, Pichler H, Schwab H (2014) Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol 98:5301–5317. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Liu Z, Tyo KEJ, Martinez JL et al (2012) Different expression systems for production of recombinant proteins in Saccharomyces cerevisiae. Biotechnol Bioeng 109:1259–1268. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Weinacker D, Rabert C, Zepeda AB et al (2013) Applications of recombinant Pichia pastoris in the healthcare industry. Brazilian J Microbiol 44:1043–1048. CrossRefGoogle Scholar
  4. 4.
    Porro D, Sauer M, Branduardi P, Mattanovich D (2005) Recombinant protein production in yeasts. Mol Biotechnol 31:1–15CrossRefGoogle Scholar
  5. 5.
    Nielsen KH (2014) Protein expression-yeast. Methods Enzymol 536:133–147. CrossRefPubMedGoogle Scholar
  6. 6.
    Garfin DE (2009) Chapter 29: One-dimensional gel electrophoresis. Methods Enzymol 463:497–513. CrossRefPubMedGoogle Scholar
  7. 7.
    Garfin DE (1990) One-dimensional gel electrophoresis. Methods Enzymol 182:425–441CrossRefGoogle Scholar
  8. 8.
    Nowakowski AB, Wobig WJ, Petering DH (2014) Native SDS-PAGE: high resolution electrophoretic separation of proteins with retention of native properties including bound metal ions. Metallomics 6:1068–1078. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefGoogle Scholar
  10. 10.
    Zhou J, Dann GP, Shi T et al (2013) A simple sodium dodecyl sulfate-assisted sample preparation method for LC-MS-based proteomics. Anal Chem 84:2862–2867. CrossRefGoogle Scholar
  11. 11.
    Goldberg M, Expert-Bezancon N, Vuillard L et al (1996) Non-detergent sulphobetaines: a new class of molecules that facilitate in vitro protein renaturation. Fold Des 1(1):21–27 Current Biology Ltd ISSN 1359-0278CrossRefGoogle Scholar
  12. 12.
    Sundaram RK, Balasubramaniyan N, Sundaram P (2012) Protein stains and applications. Methods Mol Biol 869:451–464. CrossRefPubMedGoogle Scholar
  13. 13.
    Kurien BT, Scofield RH (2012) A brief review of other notable protein detection methods on acrylamide gels. Methods Mol Biol 869:617–620. CrossRefPubMedGoogle Scholar
  14. 14.
    Karlinsey JM (2012) Sample introduction techniques for microchip electrophoresis: a review. Anal Chim Acta 725:1–13. CrossRefPubMedGoogle Scholar
  15. 15.
    Amersham™ (2014) Automated Western blotting systems. Protein labeling and detection. Application note 29-1138-92 AB 09/2014Google Scholar
  16. 16.
    Amersham™ (2014) Analysis of therapeutic antibodies using Amersham™. WB system. Protein labeling and detection. Application note 29-1140-27Google Scholar
  17. 17.
    Amersham™ (2014) Quantitative fluorescence Western blot using Amersham™. WB system. Protein labeling and detection. Application note 29-1138-93Google Scholar
  18. 18.
    Engvall E, Perlmann P (1971) Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry 8:871–874CrossRefGoogle Scholar
  19. 19.
    Engvall E, Jonsson K, Perlmann P (1971) Enzyme-linked immunosorbent assay. II. Quantitative assay of protein antigen, immunoglobulin G, by means of enzyme-labelled antigen and antibody-coated tubes. Biochim Biophys Acta 251:427–434CrossRefGoogle Scholar
  20. 20.
    Koehler G, Milstein C (2005) Continuous cultures of fused cells secreting antibody of predefined specificity. J Immunol 174:2453–2465Google Scholar
  21. 21.
    Lequin RM (2005) Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin Chem 51:2415–2418. CrossRefPubMedGoogle Scholar
  22. 22.
    Aydin S (2015) A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides 72:4–15. CrossRefPubMedGoogle Scholar
  23. 23.
    Cheng HM (1996) Tween 20 selectively enhances naturally occurring anticardiolipin antibody binding in ELISA procedures. J Immunol Methods 191:87–88. CrossRefPubMedGoogle Scholar
  24. 24.
    Cabral AR, Cabiedes J, Alarcón-Segovia D (1994) Tween 20 detaches cardiolipin from ELISA plates and makes anticardiolipin antibodies undetectable regardless of the presence of beta 2-glycoprotein-I. J Immunol Methods 175:107–114CrossRefGoogle Scholar
  25. 25.
    Nielsen UB, Geierstanger BH (2004) Multiplexed sandwich assays in microarray format. J Immunol Methods 290:107–120. CrossRefPubMedGoogle Scholar
  26. 26.
    Zhang QY, Chen H, Lin Z, Lin JM (2012) Comparison of chemiluminescence enzyme immunoassay based on magnetic microparticles with traditional colorimetric ELISA for the detection of serum α-fetoprotein. J Pharm Anal 2:130–135. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Gao Z, Hou L, Xu M, Tang D (2015) Enhanced colorimetric immunoassay accompanying with enzyme cascade amplification strategy for ultrasensitive detection of low-abundance protein. Sci Rep 4:1–8. CrossRefGoogle Scholar
  28. 28.
    Larsson A, Holmdahl R (1990) A microELISA useful for determination of protein A-binding monoclonal antibodies. Hybridoma 9:289–294. CrossRefPubMedGoogle Scholar
  29. 29.
    Maccani A, Landes N, Stadlmayr G et al (2014) Pichia pastoris secretes recombinant proteins less efficiently than Chinese hamster ovary cells but allows higher space-time yields for less complex proteins. Biotechnol J 9:526–537. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Liu R, Lin Q, Sun Y et al (2009) Expression, purification, and characterization of hepatitis B virus surface antigens (HBsAg) in yeast Pichia pastoris. Appl Biochem Biotechnol 158:432–444. CrossRefPubMedGoogle Scholar
  31. 31.
    Howard JW, Kay RG, Pleasance S, Creaser CS (2012) UHPLC for the separation of proteins and peptides. Bioanalysis 4:2971–2988. CrossRefPubMedGoogle Scholar
  32. 32.
    Nováková L, Solichová D, Solich P (2006) Advantages of ultra performance liquid chromatography over high-performance liquid chromatography: comparison of different analytical approaches during analysis of diclofenac gel. J Sep Sci 29:2433–2443CrossRefGoogle Scholar
  33. 33.
    Andrés A, Broeckhoven K, Desmet G (2015) Methods for the experimental characterization and analysis of the efficiency and speed of chromatographic columns: a step-by-step tutorial. Anal Chim Acta 894:20–34. CrossRefPubMedGoogle Scholar
  34. 34.
    Vehovec T, Obreza A (2010) Review of operating principle and applications of the charged aerosol detector. J Chromatogr A 1217:1549–1556. CrossRefPubMedGoogle Scholar
  35. 35.
    Fekete S, Veuthey JL, Guillarme D (2015) Comparison of the most recent chromatographic approaches applied for fast and high resolution separations: theory and practice. J Chromatogr A 1408:1–14. CrossRefPubMedGoogle Scholar
  36. 36.
    Gurramkonda C, Polez S, Skoko N et al (2010) Application of simple fed-batch technique to high-level secretory production of insulin precursor using Pichia pastoris with subsequent purification and conversion to human insulin. Microb Cell Factories 9(31):1–11. CrossRefGoogle Scholar
  37. 37.
    Polez S, Origi D, Zahariev S et al (2016) A simplified and efficient process for insulin production in Pichia pastoris. PLoS One 11:1–15. CrossRefGoogle Scholar
  38. 38.
    Gurramkonda C, Adnan A, Gäbel T et al (2009) Simple high-cell density fed-batch technique for high-level recombinant protein production with Pichia pastoris: Application to intracellular production of Hepatitis B surface antigen. Microb Cell Factories 8(13):1–8. CrossRefGoogle Scholar
  39. 39.
    Heo J-H, Won HS, Kang HA et al (2002) Purification of recombinant human epidermal growth factor secreted from the methylotrophic yeast Hansenula polymorpha. Protein Expr Purif 24:117–122. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ye J, Ly J, Watts K et al (2011) Optimization of a glycoengineered Pichia pastoris cultivation process for commercial antibody production. Biotechnol Prog 27:1744–1750. CrossRefPubMedGoogle Scholar
  41. 41.
    Applied Biosystems (2010) POROS A20 Analytical HPLC columns for the Quantitation of Monoclonal antibodies. Application Note 1-13Google Scholar
  42. 42.
    Moore JD, Perez-Pardo MA, Popplewell JF et al (2011) Chemical and biological characterisation of a sensor surface for bioprocess monitoring. Biosens Bioelectron 26:2940–2947. CrossRefPubMedGoogle Scholar
  43. 43.
    Petersen R (2017) Strategies using bio-layer interferometry biosensor technology for vaccine research and development. Biosensors 7(49):1–15. CrossRefGoogle Scholar
  44. 44.
    Fortebio P (2009) MAb quantitation: protein A HPLC vs. protein A bio-layer interferometry. Application Note 15:1–21Google Scholar
  45. 45.
    Fortebio P (2009) High sensitivity detection of human IgG using protein A biosensors. Technical Note 15:1–9Google Scholar
  46. 46.
    Gilmore J, Islam M, Martinez-Duarte R (2016) Challenges in the use of compact disc-based centrifugal microfluidics for healthcare diagnostics at the extreme point of care. Micromachines 7:1–26. CrossRefGoogle Scholar
  47. 47.
    Gyros (2015) Instruction For Use Gyrolab™ huIgG Kit, D0024808/C:1-10Google Scholar
  48. 48.
    Liedberg B, Nylander C, Lundström I (1995) Biosensing with surface plasmon resonance—how it all started. Biosens Bioelectron 10:i–ixCrossRefGoogle Scholar
  49. 49.
    Karlsson R, Larsson A (2004) Affinity measurement using surface plasmon resonance. Methods Mol Biol 248:389–415PubMedGoogle Scholar
  50. 50.
    Reinartz HW, Quinn JG, Zänker K, O’Kennedy R (1996) Bispecific multivalent antibody studied by real-time interaction analysis for the development of an antigen-inhibition enzyme-linked immunosorbent assay. Analyst 121:767–771CrossRefGoogle Scholar
  51. 51.
    Mcdonnell JM (2001) Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition. Curr Opin Chem Biol 5:572–577CrossRefGoogle Scholar
  52. 52.
    Nelson RW, Nedelkov D, Tubbs KA (2000) Biosensor chip mass spectrometry: a chip-based proteomics approach. Electrophoresis 21:1155–1163.<1155::AID-ELPS1155>3.0.CO;2-X CrossRefPubMedGoogle Scholar
  53. 53.
    Hartmann-Petersen R, Gordon C (2005) Quantifying protein-protein interactions in the ubiquitin pathway by surface plasmon resonance. Methods Enzymol 399:164–177. CrossRefPubMedGoogle Scholar
  54. 54.
    Hellwig S, Emde F, Raven NPG et al (2001) Analysis of single-chain antibody production in Pichia pastoris using on-line methanol control in fed-batch and mixed-feed fermentations. Biotechnol Bioeng 74:344–352. CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    GE Healthcare Life Sciences (2008) Sensor Chip NTA. Instruction 22-0519-97:1–11Google Scholar
  56. 56.
    GE Healthcare Life Sciences (2011) Sensor Chip NTA and NTA Reagent Kit Data file 29-0079-27 AA:14Google Scholar
  57. 57.
    Namba Y, Usami M, Suzuki O (1999) Highly sensitive electrochemiluminescence immunoassay using the ruthenium chelate-labeled antibody bound on the magnetic micro beads. Anal Sci 15:1087–1093. CrossRefGoogle Scholar
  58. 58.
    Sanchez-Carbayo M, Espasa A, Chinchilla V et al (1999) New electrochemiluminescent immunoassay for the determination of CYFRA: analytical evaluation and clinical diagnostic performance in urine samples of patients with bladder cancer. Clin Chem 45:1944–1953PubMedGoogle Scholar
  59. 59.
    Meso Scale Discovery (2012) MULTI-ARRAY® Assay System Human Insulin Kit 17099-v5-2012May:1-15Google Scholar
  60. 60.
    Buhlmann C, Preckel T, Chan S et al (2003) A new tool for routine testing of cellular protein expression: integration of cell staining and analysis of protein expression on a microfluidic chip-based system. J Biomol Techniques 14:119–127Google Scholar
  61. 61.
    Pandey S, Lu CM, Herold DA (2008) Measurement of microalbuminuria using protein chip electrophoresis. Am J Clin Pathol 129:432–438. CrossRefPubMedGoogle Scholar
  62. 62.
    Caliper Life Sciences (2009) Antibody analysis using Caliper’s LabChip GXII system. Application Note 400:1–4Google Scholar
  63. 63.
    Caliper Life Sciences (2009) Automated analysis of proteins using the LabChip 90 System. Application Note 100:1–4Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of BiotechnologyUniversity of Natural Resources and Life Sciences Vienna (BOKU)ViennaAustria

Personalised recommendations