Skip to main content

Protein Stains and Applications

  • Protocol
  • First Online:
Protein Electrophoresis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 869))

Abstract

Staining of proteins separated on gels provides the basis for determination of the critical properties of these biopolymers, such as their molecular weight and/or charge. Detection of proteins on gels and blots require stains. These stains vary in sensitivity, ease of use, color, stability, versatility, and specificity. This review discusses different stains and applications with details on how to use the advantages and disadvantages of each stain. It also compiles some important points to be considered in imaging and evaluation. Commonly used colorimetric and fluorescent dyes for general protein staining, and posttranslational modification-specific detection methods are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steinberg TH (2009) Protein gel staining methods: an introduction and overview. Methods Enzymol 463:541–63

    Article  PubMed  CAS  Google Scholar 

  2. Dunbar BS, Kimura H, Timmons TM (1990) Protein analysis using high resolution two-dimensional polyacrylamide gel electrophoresis. In: Deutscher MP (ed) Methods in enzymology, vol 182. Academic, San Diego, CA, pp 441–459

    Google Scholar 

  3. Garfin DE (1990) One-dimensional gel electrophoresis. In: Deutscher MP (ed) Methods in enzymology, vol 182. Academic, San Diego, CA, pp 425–441

    Google Scholar 

  4. Garfin DE (1990) Isoelectric focusing. In: Deutscher MP (ed) Methods in enzymology, vol 182. Academic, San Diego, CA, pp 459–478

    Google Scholar 

  5. Merril CR (1990) Gel-staining techniques. In: Deutscher MP (ed) Methods in enzymology, vol 182. Academic, San Diego, CA, pp 477–488, xxixþ894pp

    Google Scholar 

  6. Miller I, Crawford J, Gianazza E (2006) Protein stains for proteomic applications: which, when, why? Proteomics 6:5385–5408

    Article  PubMed  CAS  Google Scholar 

  7. Patton WF (2000) A thousand points of light: the application of fluorescence detection technologies to two-dimensional gel electrophoresis and proteomics. Electrophoresis 21:1123–1144

    Article  PubMed  CAS  Google Scholar 

  8. Patton WF (2002) Detection technologies in proteome analysis. J Chromatogr B 771:3–31

    Article  CAS  Google Scholar 

  9. Smejkal GB (2004) The Coomassie chronicles: past, present and future perspectives in polyacrylamide gel staining. Expert Rev Proteomics 1:381–387

    Article  PubMed  CAS  Google Scholar 

  10. Neuhoff V, Arold N, Taube D, Ehrhardt W (1988) Improved staining in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9:255–262

    Article  PubMed  CAS  Google Scholar 

  11. Candiano G, Bruschi M, Musante L et al (2004) Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25:1327–1333

    Article  PubMed  CAS  Google Scholar 

  12. Rabilloud T (1990) Mechanisms of protein silver staining in polyacrylamide gels: a 10-year synthesis. Electrophoresis 11:785–794

    Article  PubMed  CAS  Google Scholar 

  13. Poland J, Rabilloud T, Sinha P (2005) Silver staining of 2-D gels. In: Walker JM (ed) The proteomics protocol handbook. Humana Press, Totowa, NJ, pp 215–222

    Google Scholar 

  14. Fernandez-Patron C (2005) Zn2þ reverse staining technique. In: Walker JM (ed) The proteomics protocol handbook. Humana Press, Totowa, NJ, pp 215–222

    Google Scholar 

  15. Fernandez-Patron C, Castellanos-Serra L, Hardy E et al (1998) Understanding the mechanism of the zinc-ion stains of biomacromolecules in electrophoresis gels: generalization of the reverse-staining technique. Electrophoresis 19:2398–2406

    Article  PubMed  CAS  Google Scholar 

  16. Steinberg TH, Hart CR, Patton WF (2005) Rapid, Sensitive Detection of Proteins in Minigels with Fluorescent Dyes. Coomassie Fluor Orange, SYPRO Orange, SYPRO Red, SYPRO Tangerine, Protein Gel Stains. In: Walker JM (ed), The proteomics handbook. Humana Press, Totowa, NJ, pp 215–222

    Google Scholar 

  17. Daban JR (2001) Fluorescent labeling of proteins with Nile red and 2-methoxy-2, 4-diphenyl-3(2H)-furanone: physicochemical basis and application to the rapid staining of sodium dodecyl sulfate polyacrylamide gels and Western blots. Electrophoresis 22:874–880

    Article  PubMed  CAS  Google Scholar 

  18. Daban JR, Bartolome S, Samso M (1991) Use of the hydrophobic probe Nile red for the fluorescent staining of protein bands in sodium dodecyl sulfate-polyacrylamide gels. Anal Biochem 199:169–174

    Article  PubMed  CAS  Google Scholar 

  19. Bell PJ, Karuso P (2003) Epicocconone, a novel fluorescent compound from the fungus epicoccumnigrum. J Am Chem Soc 125:9304–9305

    Article  PubMed  CAS  Google Scholar 

  20. Schulenberg B, Goodman TN, Aggeler R et al (2004) Characterization of dynamic and steady-state protein phosphorylation using a fluorescent phosphoprotein gel stain and mass spectrometry. Electrophoresis 15:2526–2532

    Article  Google Scholar 

  21. Murray J, Marusich MF, Capaldi RA et al (2004) Focused proteomics: monoclonal antibody-based isolation of the oxidative phosphorylation machinery and detection of phosphoproteins using a fluorescent phosphoprotein gel stain. Electrophoresis 15:2520–2525

    Article  Google Scholar 

  22. Schulenberg B, Aggeler R, Beechem JM et al (2003) Analysis of steady-state protein phosphorylation in mitochondria using a novel fluorescent phosphosensor dye. J Biol Chem 278:27251–5

    Article  PubMed  CAS  Google Scholar 

  23. Steinberg TH, Agnew BJ, Gee KR et al (2003) Global quantitative phosphoprotein analysis using Multiplexed Proteomics technology. Proteomics 3:1128–44

    Article  PubMed  CAS  Google Scholar 

  24. Schulenberg B, Patton WF (2004) Combining microscale solution-phase isoelectric focusing with Multiplexed Proteomics dye staining to analyze protein post-translational modifications. Electrophoresis 25:2539–44

    Article  PubMed  CAS  Google Scholar 

  25. Hayduk EJ, Choe LH, Lee KH (2004) A two-dimensional electrophoresis map of Chinese hamster ovary cell proteins based on fluorescence staining. Electrophoresis 25:2545–56

    Article  PubMed  CAS  Google Scholar 

  26. Ge Y, Rajkumar L, Guzman RC et al (2004) Multiplexed fluorescence detection of phosphorylation, glycosylation, and total protein in the proteomic analysis of breast cancer refractoriness. Proteomics 4:346

    Article  Google Scholar 

  27. Barger BO, White RC, Pace JL et al (1976) Estimation of molecular weight by polyacrylamide gel electrophoresis using heat stable fluorophors. Anal Biochem 70:327–335

    Article  PubMed  CAS  Google Scholar 

  28. Jackson P, Urwin VE, Mackay CD (1988) Rapid imaging, using a cooled charge-coupled-device, of fluorescent two-dimensional polyacrylamide gels produced by labelling proteins in the first-dimensional isoelectric focusing gel with the fluorophore 2-methoxy-2,4-diphenyl-3(2H)furanone. Electrophoresis 9:330–339

    Article  PubMed  CAS  Google Scholar 

  29. Tonge R, Shaw J, Middleton B et al (2001) Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics 1:377–396

    Article  PubMed  CAS  Google Scholar 

  30. Uenlue M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077

    Article  Google Scholar 

  31. Sitek B, Scheibe B, Jung K, Schramm A, Stuehler K (2006) Difference gel electrophoresis (DIGE): the next generation of two-dimensional gel electrophoresis for clinical research. In: Marcus K, Stuehler K, van Hall A, Hamacher M et al. (eds) Proteomics in drug research. Wiley-VCH, Weinheim, pp 33–55

    Google Scholar 

  32. Raggiaschi R, Lorenzetto C, Diodato E et al (2006) Detection of phosphorylation patterns in rat cortical neurons by combining phosphatase treatment and DIGE technology. Proteomics 2006(6):748–756

    Article  Google Scholar 

  33. Gharbi S, Gaffney P, Yang A et al (2001) Evaluation of two-dimensional differential gel electrophoresis for proteomic expression analysis of a model breast cancer cell system. Mol Cell Proteomics 1:91–98

    Google Scholar 

  34. Huber W, von Heydebreck A, Sultmann H et al (2002) Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18(Suppl 1):S96–104

    Article  PubMed  Google Scholar 

  35. Karp NA, Kreil DP, Lilley KS (2004) Determining a significant change in protein expression with DeCyder during a pair-wise comparison using two-dimensional difference gel electrophoresis. Proteomics 4:1421–1432

    Article  PubMed  CAS  Google Scholar 

  36. Kreil DP, Karp NA, Lilley KS (2004) DNA microarray normalization methods can remove bias from differential protein expression analysis of 2D difference gel electrophoresis results. Bioinformatics 20:2026–2034

    Article  PubMed  CAS  Google Scholar 

  37. Fodor IK, Nelson DO, Alegria-Hartman M et al (2005) Statistical challenges in the analysis of two-dimensional difference gel electrophoresis experiments using DeCyder. Bioinformatics 21:3733–3740

    Article  PubMed  CAS  Google Scholar 

  38. Somiari RI, Russell S, Somiari SB, Sullivan AG et al (2005) Differential In-Gel Electrophoresis in a High-Throughput Environment. In: Walker JM (ed) The proteomics handbook. Humana Press, Totowa, NJ, pp 223–237.

    Google Scholar 

  39. Greengauz-Roberts O, Stoppler H, Nomura S et al (2005) Saturation labeling with cysteine-reactive cyanine fluorescent dyes provides increased sensitivity for protein expression profiling of laser-microdissected clinical specimens. Proteomics 5:1746–1757

    Article  PubMed  CAS  Google Scholar 

  40. Wilson KE, Marouga R, Prime JE et al (2005) Comparative proteomic analysis using samples obtained with laser microdissection and ­saturation dye labeling. Proteomics 5:3851–3858

    Article  PubMed  CAS  Google Scholar 

  41. Sitek B, Luttges J, Marcus K et al (2005) Application of fluorescence difference gel electrophoresis saturation labelling for the analysis of microdissected precursor lesions of pancreatic ductal adenocarcinoma. Proteomics 5:2665–2679

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sundaram, R.K., Balasubramaniyan, N., Sundaram, P. (2012). Protein Stains and Applications. In: Kurien, B., Scofield, R. (eds) Protein Electrophoresis. Methods in Molecular Biology, vol 869. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-821-4_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-821-4_39

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-820-7

  • Online ISBN: 978-1-61779-821-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics