Skip to main content

Live Cell Imaging of Bone Cell and Organ Cultures

  • Protocol
  • First Online:
Bone Research Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1914))

Abstract

Over the past two decades there have been unprecedented advances in the capabilities for live cell imaging using light and confocal microscopy. Together with the discovery of green fluorescent protein and its derivatives and the development of a vast array of fluorescent imaging probes and conjugates, it is now possible to image virtually any intracellular or extracellular protein or structure. Traditional static imaging of fixed bone cells and tissues takes a snapshot view of events at a specific time point, but can often miss the dynamic aspects of the events being investigated. This chapter provides an overview of the application of live cell imaging approaches for the study of bone cells and bone organ cultures. Rather than emphasizing technical aspects of the imaging equipment, which may vary in different laboratories, we focus on what we consider to be the important principles that are of most practical use for an investigator setting up these techniques in their own laboratory. We also provide detailed protocols that our laboratory has used for live imaging of bone cell and organ cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Faibish D, Gomes A, Boivin G, Binderman I, Boskey A (2005) Infrared imaging of calcified tissue in bone biopsies from adults with osteomalacia. Bone 36(1):6–12

    Article  CAS  Google Scholar 

  2. Huitema LF, Vaandrager AB (2007) What triggers cell-mediated mineralization? Front Biosci 12:2631–2645

    Article  CAS  Google Scholar 

  3. McKee MD, Addison WN, Kaartinen MT (2005) Hierarchies of extracellular matrix and mineral organization in bone of the craniofacial complex and skeleton. Cells Tissues Organs 181(3–4):176–188

    Article  CAS  Google Scholar 

  4. Murshed M, Harmey D, Millan JL, McKee MD, Karsenty G (2005) Unique coexpression in osteoblasts of broadly expressed genes accounts for the spatial restriction of ECM mineralization to bone. Genes Dev 19(9):1093–1104

    Article  CAS  Google Scholar 

  5. Eils R, Athale C (2003) Computational imaging in cell biology. J Cell Biol 161(3):477–481

    Article  CAS  Google Scholar 

  6. Kulesa PM (2004) Developmental imaging: Insights into the avian embryo. Birth Defects Res C Embryo Today 72(3):260–266

    Article  CAS  Google Scholar 

  7. Friedl P (2004) Dynamic imaging of cellular interactions with extracellular matrix. Histochem Cell Biol 122(3):183–190

    Article  CAS  Google Scholar 

  8. Sivakumar P, Czirok A, Rongish BJ, Divakara VP, Wang YP, Dallas SL (2006) New insights into extracellular matrix assembly and reorganization from dynamic imaging of extracellular matrix proteins in living osteoblasts. J Cell Sci 119(Pt 7):1350–1360

    Article  CAS  Google Scholar 

  9. Dallas SL, Chen Q, Sivakumar P (2006) Dynamics of assembly and reorganization of extracellular matrix proteins. Curr Top Dev Biol 75:1–24

    Article  CAS  Google Scholar 

  10. Zamir EA, Rongish BJ, Little CD (2008) The ECM moves during primitive streak formation--computation of ECM versus cellular motion. PLoS Biol 6(10):e247

    Article  Google Scholar 

  11. Frigault MM, Lacoste J, Swift JL, Brown CM (2009) Live-cell microscopy–tips and tools. J Cell Sci 122(Pt 6):753–767

    Article  CAS  Google Scholar 

  12. Mavrakis M, Pourquie O, Lecuit T (2010) Lighting up developmental mechanisms: how fluorescence imaging heralded a new era. Development 137(3):373–387

    Article  CAS  Google Scholar 

  13. Xie Y, Yin T, Wiegraebe W, He XC, Miller D, Stark D, Perko K, Alexander R, Schwartz J, Grindley JC, Park J, Haug JS, Wunderlich JP, Li H, Zhang S, Johnson T, Feldman RA, Li L (2009) Detection of functional haematopoietic stem cell niche using real-time imaging. Nature 457(7225):97–101

    Article  CAS  Google Scholar 

  14. Lo Celso C, Wu JW, Lin CP (2009) In vivo imaging of hematopoietic stem cells and their microenvironment. J Biophotonics 2(11):619–631

    Article  Google Scholar 

  15. Lu Y, Kamel-El Sayed SA, Wang K, Tiede-Lewis LM, Grillo MA, Veno PA, Dusevich V, Phillips CL, Bonewald LF, Dallas SL (2018) Live imaging of type I collagen assembly dynamics in osteoblasts stably expressing GFP and mCherry-tagged collagen constructs. J Bone Miner Res 33(6):1166–1182

    Article  CAS  Google Scholar 

  16. Tiede L, Steyger PS, Nichols MG, Hallworth R (2009) Metabolic imaging of the organ of corti--a window on cochlea bioenergetics. Brain Res 1277:37–41

    Article  CAS  Google Scholar 

  17. Tiede LM, Rocha-Sanchez SM, Hallworth R, Nichols MG, Beisel K (2007) Determination of hair cell metabolic state in isolated cochlear preparations by two-photon microscopy. J Biomed Opt 12(2):021004

    Article  Google Scholar 

  18. Appelhans T, Busch KB (2017) Dynamic imaging of mitochondrial membrane proteins in specific sub-organelle membrane locations. Biophys Rev 9(4):345–352

    Article  CAS  Google Scholar 

  19. Bigley RB, Payumo AY, Alexander JM, Huang GN (2017) Insights into nuclear dynamics using live-cell imaging approaches. Wiley Interdiscip Rev Syst Biol Med 9(2). https://doi.org/10.1002/wsbm.1372

    Google Scholar 

  20. Bell DM (2017) Imaging morphogenesis. Philos Trans R Soc Lond Ser B Biol Sci 372(1720). https://doi.org/10.1098/rstb.2015.0511

    Article  Google Scholar 

  21. Ratnayake D, Currie PD (2017) Stem cell dynamics in muscle regeneration: Insights from live imaging in different animal models. BioEssays 39(6). https://doi.org/10.1002/bies.201700011

    Article  Google Scholar 

  22. Hamilton N (2009) Quantification and its applications in fluorescent microscopy imaging. Traffic 10(8):951–961

    Article  CAS  Google Scholar 

  23. Sekar RB, Periasamy A (2003) Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J Cell Biol 160(5):629–633

    Article  CAS  Google Scholar 

  24. Day RN, Schaufele F (2005) Imaging molecular interactions in living cells. Mol Endocrinol 19(7):1675–1686

    Article  CAS  Google Scholar 

  25. Parsons M, Vojnovic B, Ameer-Beg S (2004) Imaging protein-protein interactions in cell motility using fluorescence resonance energy transfer (FRET). Biochem Soc Trans 32(Pt3):431–433

    Article  CAS  Google Scholar 

  26. Wiedenmann J, Oswald F, Nienhaus GU (2009) Fluorescent proteins for live cell imaging: opportunities, limitations, and challenges. IUBMB Life 61(11):1029–1042

    Article  CAS  Google Scholar 

  27. Alpert T, Herzel L, Neugebauer KM (2017) Perfect timing: splicing and transcription rates in living cells. Wiley Interdiscip Rev RNA 8(2). https://doi.org/10.1002/wrna.1401

    Article  Google Scholar 

  28. Czaplinski K (2017) Techniques for single-molecule mRNA imaging in living cells. Adv Exp Med Biol 978:425–441

    Article  CAS  Google Scholar 

  29. Gonzalez Bardeci N, Angiolini JF, De Rossi MC, Bruno L, Levi V (2017) Dynamics of intracellular processes in live-cell systems unveiled by fluorescence correlation microscopy. IUBMB Life 69(1):8–15

    Article  CAS  Google Scholar 

  30. Icha J, Weber M, Waters JC, Norden C (2017) Phototoxicity in live fluorescence microscopy, and how to avoid it. BioEssays 39(8). https://doi.org/10.1002/bies.201700003

    Article  Google Scholar 

  31. Czirok A, Zamir EA, Filla MB, Little CD, Rongish BJ (2006) Extracellular matrix macroassembly dynamics in early vertebrate embryos. Curr Top Dev Biol 73:237–258

    Article  CAS  Google Scholar 

  32. Fowler DA, Filla MB, Little CD, Rongish BJ, Larsson HCE (2018) Live tissue antibody injection: A novel method for imaging ECM in limb buds and other tissues. Methods Cell Biol 143:41–56

    Article  Google Scholar 

  33. Ohashi T, Kiehart DP, Erickson HP (1999) Dynamics and elasticity of the fibronectin matrix in living cell culture visualized by fibronectin-green fluorescent protein. Proc Natl Acad Sci U S A 96(5):2153–2158

    Article  CAS  Google Scholar 

  34. Kalajzic I, Braut A, Guo D, Jiang X, Kronenberg MS, Mina M, Harris MA, Harris SE, Rowe DW (2004) Dentin matrix protein 1 expression during osteoblastic differentiation, generation of an osteocyte GFP-transgene. Bone 35(1):74–82

    Article  CAS  Google Scholar 

  35. Kamel-ElSayed SA, Tiede-Lewis LM, Lu Y, Veno PA, Dallas SL (2015) Novel approaches for two and three dimensional multiplexed imaging of osteocytes. Bone 76:129–140

    Article  CAS  Google Scholar 

  36. Yang W, Lu Y, Kalajzic I, Guo D, Harris MA, Gluhak-Heinrich J, Kotha S, Bonewald LF, Feng JQ, Rowe DW, Turner CH, Robling AG, Harris SE (2005) Dentin matrix protein 1 gene cis-regulation: use in osteocytes to characterize local responses to mechanical loading in vitro and in vivo. J Biol Chem 280(21):20680–20690

    Article  CAS  Google Scholar 

  37. Ghosh-Choudhury N, Windle JJ, Koop BA, Harris MA, Guerrero DL, Wozney JM, Mundy GR, Harris SE (1996) Immortalized murine osteoblasts derived from BMP 2-T-antigen expressing transgenic mice. Endocrinology 137(1):331–339

    Article  CAS  Google Scholar 

  38. Kalajzic I, Kalajzic Z, Kaliterna M, Gronowicz G, Clark SH, Lichtler AC, Rowe D (2002) Use of type I collagen green fluorescent protein transgenes to identify subpopulations of cells at different stages of the osteoblast lineage. J Bone Miner Res 17(1):15–25

    Article  CAS  Google Scholar 

  39. Dallas SL, Veno PA, Rosser JL, Barragan-Adjemian C, Rowe DW, Kalajzic I, Bonewald LF (2009) Time-lapse imaging techniques for comparison of mineralization dynamics in primary murine osteoblasts and the late osteoblast/early osteocyte-like cell line MLO-A5. Cells Tissues Organs 189(1–4):6–11

    Article  Google Scholar 

  40. Dallas SL, Veno PA, Bonewald LF, Rowe DW, Kalajzic I (2007) Dynamic imaging of fluorescently tagged osteoblast and osteocyte populations integrates mineralization dynamics with osteoblast to osteocyte transition. J Bone Miner Res 22(suppl1):S13

    Google Scholar 

  41. Nketia TA, Sailem H, Rohde G, Machiraju R, Rittscher J (2017) Analysis of live cell images: methods, tools and opportunities. Methods 115:65–79

    Article  CAS  Google Scholar 

  42. Aleksandrova A, Czirok A, Szabo A, Filla MB, Hossain MJ, Whelan PF, Lansford R, Rongish BJ (2012) Convective tissue movements play a major role in avian endocardial morphogenesis. Dev Biol 363(2):348–361

    Article  CAS  Google Scholar 

  43. Cui C, Cheuvront TJ, Lansford RD, Moreno-Rodriguez RA, Schultheiss TM, Rongish BJ (2009) Dynamic positional fate map of the primary heart-forming region. Dev Biol 332(2):212–222

    Article  CAS  Google Scholar 

  44. Loganathan R, Rongish BJ, Smith CM, Filla MB, Czirok A, Benazeraf B, Little CD (2016) Extracellular matrix motion and early morphogenesis. Development 143(12):2056–2065

    Article  CAS  Google Scholar 

  45. Aleksandrova A, Rongish BJ, Little CD, Czirok A (2015) Active cell and ECM movements during development. Methods Mol Biol 1189:123–132

    Article  Google Scholar 

  46. Veno PA, Nicolella DP, Kalajzic I, Rowe DW, Bonewald LF, and Dallas SL (2007) Dynamic imaging in living calvaria reveals the motile properties of osteoblasts and osteocytes and suggests heterogeneity of osteoblasts in bone. 29th Annual Meeting of the American society of bone and mineral research. Sept, 2007, Honolulu. (Abstract #1045)

    Google Scholar 

  47. Zamir EA, Czirok A, Rongish BJ, Little CD (2005) A digital image-based method for computational tissue fate mapping during early avian morphogenesis. Ann Biomed Eng 33(6):854–865

    Article  Google Scholar 

  48. Zahedi A, On V, Lin SC, Bays BC, Omaiye E, Bhanu B, Talbot P (2016) Evaluating cell processes, quality, and biomarkers in pluripotent stem cells using video bioinformatics. PLoS One 11(2):e0148642

    Article  Google Scholar 

  49. Bhanu B, Talbot P (2015) Video bioinformatics. In: Computational biology: from live imaging to knowledge, 1st edn. Springer International Publishing. XLIII, Cham, p 381

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah L. Dallas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dallas, S.L., Veno, P.A., Tiede-Lewis, L.M. (2019). Live Cell Imaging of Bone Cell and Organ Cultures. In: Idris, A. (eds) Bone Research Protocols. Methods in Molecular Biology, vol 1914. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8997-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8997-3_27

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8996-6

  • Online ISBN: 978-1-4939-8997-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics