Skip to main content

Techniques for Single-Molecule mRNA Imaging in Living Cells

  • Chapter
  • First Online:
Neuroepigenomics in Aging and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((PMISB,volume 978))

Abstract

Typical measurement of macromolecules in a biological sample typically averages the result over all the cells or molecules within the sample, and while these types of measurements provide very useful information, they completely miss heterogeneity among the components within the sample that could be a very important aspect of the sample’s function. These techniques are also limited in their ability to examine intracellular spatial orientation of molecular activity, which is often a critical component to the regulation of biological processes, particularly in cells with unique spatial relationships, such as neurons. This makes a strong case for single-cell and single-molecule analysis that allows similar novel insight into complex molecular machinery that would not be possible when pooling heterogeneous molecular states. mRNA has proven to be quite tractable to molecular analysis in single cells. Almost two decades of single-molecule studies of mRNA processing both in situ and in live cells have been facilitated by microscopy of mRNA. This has been made possible by multiplexing fluorophores in situ hybridization probes or fluorescent RNA-tag-binding protein probes. The purpose of this chapter is to describe the approaches that have made single-molecule mRNA imaging accessible, as well as to give an overview of the state of the art for techniques that are available to track mRNA in real time in living cells, highlighting the application to neuroscience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Donnelly CJ, Fainzilber M, Twiss JL. Subcellular communication through RNA transport and localized protein synthesis. Traffic. 2010;11(12):1498–505. doi:10.1111/j.1600-0854.2010.01118.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Holt CE, Schuman EM. The central dogma decentralized: new perspectives on RNA function and local translation in neurons. Neuron. 2013;80(3):648–57. doi:10.1016/j.neuron.2013.10.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hornberg H, Holt C. RNA-binding proteins and translational regulation in axons and growth cones. Front Neurosci. 2013;7:81. doi:10.3389/fnins.2013.00081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jung H, O'Hare CM, Holt CE. Translational regulation in growth cones. Curr Opin Genet Dev 2011;21(4):458–464. doi:S0959-437X(11)00072-4 [pii]. 10.1016/j.gde.2011.04.004.

  5. Klann E, Richter JD. Translational control of synaptic plasticity and learning and memory. In: Sonenberg N, Matthews M, Hershey J, editors. Translational control: Cold Spring Harbor Press; 2006.

    Google Scholar 

  6. Martin KC, Zukin RS. RNA trafficking and local protein synthesis in dendrites: an overview. J Neurosci. 2006;26(27):7131–7134. doi:26/27/7131 [pii]. 10.1523/JNEUROSCI.1801-06.2006.

  7. Richter JD, Klann E. Making synaptic plasticity and memory last: mechanisms of translational regulation. Genes Dev. 2009;23(1):1–11. doi:23/1/1 [pii]. 10.1101/gad.1735809.

  8. Sutton MA, Schuman EM. Dendritic protein synthesis, synaptic plasticity, and memory. Cell. 2006;127(1):49–58. doi:10.1016/j.cell.2006.09.014.

    Article  CAS  PubMed  Google Scholar 

  9. Yoon YJ, Wu B, Buxbaum AR, Das S, Tsai A, English BP, et al. Glutamate-induced RNA localization and translation in neurons. Proc Natl Acad Sci U S A. 2016; doi:10.1073/pnas.1614267113.

    Google Scholar 

  10. Czaplinski K. Understanding mRNA trafficking: are we there yet? Semin Cell Dev Biol. 2014;32:63–70. doi:10.1016/j.semcdb.2014.04.025.

    Article  CAS  PubMed  Google Scholar 

  11. Doyle M, Kiebler MA. Mechanisms of dendritic mRNA transport and its role in synaptic tagging. EMBO J 2011;30(17):3540–3552. doi:emboj2011278 [pii]. 10.1038/emboj.2011.278.

  12. Sinnamon JR, Czaplinski K. mRNA trafficking and local translation: the Yin and Yang of regulating mRNA localization in neurons. Acta Biochim Biophys Sin Shanghai 2011;43(9):663–670. doi:gmr058 [pii]. 10.1093/abbs/gmr058.

  13. Cajigas IJ, Tushev G, Will TJ, Tom Dieck S, Fuerst N, Schuman EM. The local transcriptome in the synaptic neuropil revealed by deep sequencing and high-resolution imaging. Neuron. 2012;74(3):453–66. doi:10.1016/j.neuron.2012.02.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gumy LF, Yeo GS, Tung YC, Zivraj KH, Willis D, Coppola G et al. Transcriptome analysis of embryonic and adult sensory axons reveals changes in mRNA repertoire localization. RNA 2010;17(1):85–98. doi:rna.2386111 [pii]. 10.1261/rna.2386111.

    Google Scholar 

  15. Misra M, Edmund H, Ennis D, Schlueter MA, Marot JE, Tambasco J et al. A genome-wide screen for dendritically localized RNAs identifies genes required for dendrite morphogenesis. G3 (Bethesda). 2016;6(8):2397–405. doi:10.1534/g3.116.030353.

  16. Poon MM, Choi SH, Jamieson CA, Geschwind DH, Martin KC. Identification of process-localized mRNAs from cultured rodent hippocampal neurons. J Neurosci. 2006;26(51):13390–9. doi:26/51/13390 [pii]. 10.1523/JNEUROSCI.3432–06.2006.

  17. Taylor AM, Berchtold NC, Perreau VM, Tu CH, Li Jeon N, Cotman CW. Axonal mRNA in uninjured and regenerating cortical mammalian axons. J Neurosci. 2009;29(15):4697–707. doi:29/15/4697 [pii]. 10.1523/JNEUROSCI.6130–08.2009.

  18. Zhong J, Zhang T, Bloch LM. Dendritic mRNAs encode diversified functionalities in hippocampal pyramidal neurons. BMC Neurosci. 2006;7:17. doi:10.1186/1471-2202-7-17.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Buxbaum AR, Haimovich G, Singer RH. In the right place at the right time: visualizing and understanding mRNA localization. Nat Rev Mol Cell Biol. 2015a;16(2):95–109. doi:10.1038/nrm3918.

    Article  CAS  PubMed  Google Scholar 

  20. Hengst U, Deglincerti A, Kim HJ, Jeon NL, Jaffrey SR. Axonal elongation triggered by stimulus-induced local translation of a polarity complex protein. Nat Cell Biol 2009;11(8):1024–1030. doi:ncb1916 [pii]. 10.1038/ncb1916.

  21. Jambhekar A, Derisi JL. Cis-acting determinants of asymmetric, cytoplasmic RNA transport. RNA. 2007;13(5):625–642. doi:13/5/625 [pii]. 10.1261/rna.262607.

  22. Kobayashi H, Yamamoto S, Maruo T, Murakami F. Identification of a cis-acting element required for dendritic targeting of activity-regulated cytoskeleton-associated protein mRNA. Eur J Neurosci 2005;22(12):2977–2984. doi:EJN4508 [pii]. 10.1111/j.1460-9568.2005.04508.x.

  23. Martin KC, Ephrussi A. mRNA localization: gene expression in the spatial dimension. Cell 2009;136(4):719–730. doi:S0092-8674(09)00126-3 [pii]. 10.1016/j.cell.2009.01.044.

  24. Meer EJ, Wang DO, Kim S, Barr I, Guo F, Martin KC. Identification of a cis-acting element that localizes mRNA to synapses. Proc Natl Acad Sci U S A. 2012;109(12):4639–44. doi:10.1073/pnas.1116269109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Muslimov IA, Nimmrich V, Hernandez AI, Tcherepanov A, Sacktor TC, Tiedge H. Dendritic transport and localization of protein kinase Mzeta mRNA: implications for molecular memory consolidation. J Biol Chem 2004;279(50):52613–52622. doi:10.1074/jbc.M409240200. M409240200 [pii].

  26. Patel VL, Mitra S, Harris R, Buxbaum AR, Lionnet T, Brenowitz M et al. Spatial arrangement of an RNA zipcode identifies mRNAs under post-transcriptional control. Genes Dev. 2012;26(1):43–53. doi:26/1/43 [pii]. 10.1101/gad.177428.111.

  27. Rehbein M, Wege K, Buck F, Schweizer M, Richter D, Kindler S. Molecular characterization of MARTA1, a protein interacting with the dendritic targeting element of MAP2 mRNAs. J Neurochem. 2002;82(5):1039–46.

    Article  CAS  PubMed  Google Scholar 

  28. Tubing F, Vendra G, Mikl M, Macchi P, Thomas S, Kiebler MA. Dendritically localized transcripts are sorted into distinct ribonucleoprotein particles that display fast directional motility along dendrites of hippocampal neurons. J Neurosci. 2010;30(11):4160–70. doi:30/11/4160 [pii]. 10.1523/JNEUROSCI.3537–09.2010.

  29. Vuppalanchi D, Coleman J, Yoo S, Merianda TT, Yadhati AG, Hossain J et al. Conserved 3'-untranslated region sequences direct subcellular localization of chaperone protein mRNAs in neurons. J Biol Chem 2010;285(23):18025–18038. doi:M109.061333 [pii]. 10.1074/jbc.M109.061333.

  30. Donnelly CJ, Willis DE, Xu M, Tep C, Jiang C, Yoo S et al. Limited availability of ZBP1 restricts axonal mRNA localization and nerve regeneration capacity. EMBO J 2011. doi:emboj2011347 [pii]. 10.1038/emboj.2011.347.

  31. Mikl M, Vendra G, Doyle M, Kiebler MA. RNA localization in neurite morphogenesis and synaptic regulation: current evidence and novel approaches. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2010;196(5):321–34. doi:10.1007/s00359-010-0520-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Muslimov IA, Patel MV, Rose A, Tiedge H. Spatial code recognition in neuronal RNA targeting: role of RNA-hnRNP A2 interactions. J Cell Biol 2011;194(3):441–457. doi:jcb.201010027 [pii]. 10.1083/jcb.201010027.

  33. Shan J, Munro TP, Barbarese E, Carson JH, Smith R. A molecular mechanism for mRNA trafficking in neuronal dendrites. J Neurosci. 2003;23(26):8859–66.

    CAS  PubMed  Google Scholar 

  34. Grunwald D, Singer RH, Czaplinski K. Cell biology of mRNA decay. Methods Enzymol 2008;448:553–577. doi:S0076-6879(08)02627-X [pii]. 10.1016/S0076-6879(08)02627-X.

  35. Lampasona AA, Czaplinski K. RNA voyeurism: a coming of age story. Methods. 2016;98:10–7. doi:10.1016/j.ymeth.2015.11.024.

    Article  CAS  PubMed  Google Scholar 

  36. Eliscovich C, Buxbaum AR, Katz ZB, Singer RH. mRNA on the move: the road to its biological destiny. J Biol Chem. 2013;288(28):20361–8. doi:10.1074/jbc.R113.452094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Park HY, Buxbaum AR, Singer RH. Single mRNA tracking in live cells. Methods Enzymol 2010;472:387–406. doi:S0076-6879(10)72003-6 [pii]. 10.1016/S0076-6879(10)72003-6.

  38. Buxbaum AR, Yoon YJ, Singer RH, Park HY. Single-molecule insights into mRNA dynamics in neurons. Trends Cell Biol. 2015b;25(8):468–75. doi:10.1016/j.tcb.2015.05.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen H, Larson DR. What have single-molecule studies taught us about gene expression? Genes Dev. 2016;30(16):1796–810. doi:10.1101/gad.281725.116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mellis IA, Raj A. Half dozen of one, six billion of the other: what can small- and large-scale molecular systems biology learn from one another? Genome Res. 2015;25(10):1466–72. doi:10.1101/gr.190579.115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Moignard V, Gottgens B. Dissecting stem cell differentiation using single cell expression profiling. Curr Opin Cell Biol. 2016;43:78–86. doi:10.1016/j.ceb.2016.08.005.

    Article  CAS  PubMed  Google Scholar 

  42. Symmons O, Raj A. What's luck got to do with it: single cells, multiple fates, and biological nondeterminism. Mol Cell. 2016;62(5):788–802. doi:10.1016/j.molcel.2016.05.023.

    Article  CAS  PubMed  Google Scholar 

  43. Levsky JM, Singer RH. Gene expression and the myth of the average cell. Trends Cell Biol 2003;13(1):4–6. doi:S0962892402000028 [pii].

    Google Scholar 

  44. Raj A, van Oudenaarden A. Nature, nurture, or chance: stochastic gene expression and its consequences. Cell. 2008;135(2):216–26. doi:10.1016/j.cell.2008.09.050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yu J. Single-molecule studies in live cells. Annu Rev Phys Chem. 2016;67:565–85. doi:10.1146/annurev-physchem-040215-112451.

    Article  CAS  PubMed  Google Scholar 

  46. Licht K, Jantsch MF. Rapid and dynamic transcriptome regulation by RNA editing and RNA modifications. J Cell Biol. 2016;213(1):15–22. doi:10.1083/jcb.201511041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Satterlee JS, Basanta-Sanchez M, Blanco S, Li JB, Meyer K, Pollock J, et al. Novel RNA modifications in the nervous system: form and function. J Neurosci. 2014;34(46):15170–7. doi:10.1523/JNEUROSCI.3236-14.2014.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Silverman IM, Berkowitz ND, Gosai SJ, Gregory BD. Genome-wide approaches for RNA structure probing. Adv Exp Med Biol. 2016;907:29–59. doi:10.1007/978-3-319-29073-7_2.

    Article  PubMed  Google Scholar 

  49. Weidmann CA, Mustoe AM, Weeks KM. Direct duplex detection: an emerging tool in the RNA structure analysis toolbox. Trends Biochem Sci. 2016;41(9):734–6. doi:10.1016/j.tibs.2016.07.001.

    Article  CAS  PubMed  Google Scholar 

  50. Yue Y, Liu J, He C. RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev. 2015;29(13):1343–55. doi:10.1101/gad.262766.115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Femino AM, Fogarty K, Lifshitz LM, Carrington W, Singer RH. Visualization of single molecules of mRNA in situ. Methods Enzymol. 2003;361:245–304.

    Article  CAS  PubMed  Google Scholar 

  52. Raj A, van den Bogaard P, Rifkin SA, van Oudenaarden A, Tyagi S. Imaging individual mRNA molecules using multiple singly labeled probes. Nat Methods 2008;5(10):877–879. doi:nmeth.1253 [pii]. 10.1038/nmeth.1253.

  53. Shaffer SM, Wu MT, Levesque MJ, Raj A. turbo FISH: a method for rapid single molecule RNA FISH. PLoS One 2013;8(9):e75120. doi:10.1371/journal.pone.0075120.

  54. Sinnamon JR, Czaplinski K. RNA detection in situ with FISH-STICs. RNA. 2014;20(2):260–6. doi:10.1261/rna.041905.113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Batish M, van den Bogaard P, Kramer FR, Tyagi S. Neuronal mRNAs travel singly into dendrites. Proc Natl Acad Sci U S A. 2012;109(12):4645–50. doi:10.1073/pnas.1111226109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Buxbaum AR, Wu B, Singer RH. Single beta-actin mRNA detection in neurons reveals a mechanism for regulating its translatability. Science. 2014;343(6169):419–22. doi:10.1126/science.1242939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Femino AM, Fay FS, Fogarty K, Singer RH. Visualization of single RNA transcripts in situ. Science. 1998;280(5363):585–90.

    Article  CAS  PubMed  Google Scholar 

  58. Trcek T, Larson DR, Moldon A, Query CC, Singer RH. Single-molecule mRNA decay measurements reveal promoter- regulated mRNA stability in yeast. Cell. 2011;147(7):1484–97. doi:10.1016/j.cell.2011.11.051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bertrand E, Chartrand P, Schaefer M, Shenoy SM, Singer RH, Long RM. Localization of ASH1 mRNA particles in living yeast. Mol Cell. 1998;2(4):437–45.

    Article  CAS  PubMed  Google Scholar 

  60. Chao J, Czaplinski, K, Singer, RH. Using the bacteriophage MS2 coat protein-RNA binding interaction to visualise RNA in living cells. In: LW M, editor. Probes and tags to study Biomolecular function. Weinheim: Wiley-VCH; 2008a.

    Google Scholar 

  61. Chao JA, Patskovsky Y, Almo SC, Singer RH. Structural basis for the coevolution of a viral RNA-protein complex. Nat Struct Mol Biol. 2008b;15(1):103–5. doi:10.1038/nsmb1327.

    Article  CAS  PubMed  Google Scholar 

  62. Wu B, Miskolci V, Sato H, Tutucci E, Kenworthy CA, Donnelly SK, et al. Synonymous modification results in high-fidelity gene expression of repetitive protein and nucleotide sequences. Genes Dev. 2015;29(8):876–86. doi:10.1101/gad.259358.115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wu B, Chao JA, Singer RH. Fluorescence fluctuation spectroscopy enables quantitative imaging of single mRNAs in living cells. Biophys J 2012;102(12):2936–2944. doi:S0006-3495(12)00570-X [pii]. 10.1016/j.bpj.2012.05.017.

  64. Halstead JM, Lionnet T, Wilbertz JH, Wippich F, Ephrussi A, Singer RH, et al. Translation. An RNA biosensor for imaging the first round of translation from single cells to living animals. Science. 2015;347(6228):1367–671. doi:10.1126/science.aaa3380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hocine S, Raymond P, Zenklusen D, Chao JA, Singer RH. Single-molecule analysis of gene expression using two-color RNA labeling in live yeast. Nat Methods. 2013;10(2):119–21. doi:10.1038/nmeth.2305.

    Article  CAS  PubMed  Google Scholar 

  66. Daigle N, Ellenberg J. LambdaN-GFP: an RNA reporter system for live-cell imaging. Nat Methods. 2007;4(8):633–6. doi:10.1038/nmeth1065.

    Article  CAS  PubMed  Google Scholar 

  67. Konig J, Baumann S, Koepke J, Pohlmann T, Zarnack K, Feldbrugge M. The fungal RNA-binding protein Rrm4 mediates long-distance transport of ubi1 and rho3 mRNAs. EMBO J. 2009;28(13):1855–66. doi:10.1038/emboj.2009.145.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Bratu DP, Catrina IE, Marras SA. Tiny molecular beacons for in vivo mRNA detection. Methods Mol Biol. 2011;714:141–57. doi:10.1007/978-1-61779-005-8_9.

    Article  CAS  PubMed  Google Scholar 

  69. Catrina IE, Marras SA, Bratu DP. Tiny molecular beacons: LNA/2'-O-methyl RNA chimeric probes for imaging dynamic mRNA processes in living cells. ACS Chem Biol. 2012;7(9):1586–95. doi:10.1021/cb300178a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sato S, Watanabe M, Katsuda Y, Murata A, Wang DO, Uesugi M. Live-cell imaging of endogenous mRNAs with a small molecule. Angew Chem Int Ed Engl. 2015;54(6):1855–8. doi:10.1002/anie.201410339.

    Article  CAS  PubMed  Google Scholar 

  71. Alonas E, Lifland AW, Gudheti M, Vanover D, Jung J, Zurla C, et al. Combining single RNA sensitive probes with subdiffraction-limited and live-cell imaging enables the characterization of virus dynamics in cells. ACS Nano. 2014;8(1):302–15. doi:10.1021/nn405998v.

    Article  CAS  PubMed  Google Scholar 

  72. Santangelo PJ, Alonas E, Jung J, Lifland AW, Zurla C. Probes for intracellular RNA imaging in live cells. Methods Enzymol. 2012;505:383–99. doi:10.1016/B978-0-12-388448-0.00028-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Edwards TA. Bespoke RNA recognition by Pumilios. Biochem Soc Trans 2015;43(5):801–806. doi:10.1042/BST20150072.

  74. Yamada T, Yoshimura H, Inaguma A, Ozawa T. Visualization of nonengineered single mRNAs in living cells using genetically encoded fluorescent probes. Anal Chem. 2011;83(14):5708–14. doi:10.1021/ac2009405.

    Article  CAS  PubMed  Google Scholar 

  75. Yoshimura H, Inaguma A, Yamada T, Ozawa T. Fluorescent probes for imaging endogenous beta-actin mRNA in living cells using fluorescent protein-tagged pumilio. ACS Chem Biol. 2012;7(6):999–1005. doi:10.1021/cb200474a.

    Article  CAS  PubMed  Google Scholar 

  76. Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157(6):1262–78. doi:10.1016/j.cell.2014.05.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sternberg SH, Doudna JA. Expanding the Biologist’s toolkit with CRISPR-Cas9. Mol Cell. 2015;58(4):568–74. doi:10.1016/j.molcel.2015.02.032.

    Article  CAS  PubMed  Google Scholar 

  78. Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li GW, et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell. 2013;155(7):1479–91. doi:10.1016/j.cell.2013.12.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nelles DA, Fang MY, O'Connell MR, Xu JL, Markmiller SJ, Doudna JA, et al. Programmable RNA tracking in live cells with CRISPR/Cas9. Cell. 2016;165(2):488–96. doi:10.1016/j.cell.2016.02.054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Shechner DM, Hacisuleyman E, Younger ST, Rinn JL. Multiplexable, locus-specific targeting of long RNAs with CRISPR-display. Nat Methods. 2015;12(7):664–70. doi:10.1038/nmeth.3433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell. 2014;159(3):635–46. doi:10.1016/j.cell.2014.09.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tatavarty V, Ifrim MF, Levin M, Korza G, Barbarese E, Yu J, et al. Single-molecule imaging of translational output from individual RNA granules in neurons. Mol Biol Cell. 2012;23(5):918–29. doi:10.1091/mbc.E11-07-0622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rodriguez AJ, Shenoy SM, Singer RH, Condeelis J. Visualization of mRNA translation in living cells. J Cell Biol 2006;175(1):67–76. doi:jcb.200512137 [pii]. 10.1083/jcb.200512137.

  84. Colby DW, Garg P, Holden T, Chao G, Webster JM, Messer A, et al. Development of a human light chain variable domain (V(L)) intracellular antibody specific for the amino terminus of huntingtin via yeast surface display. J Mol Biol. 2004;342(3):901–12. doi:10.1016/j.jmb.2004.07.054.

    Article  CAS  PubMed  Google Scholar 

  85. Morisaki T, Lyon K, DeLuca KF, DeLuca JG, English BP, Zhang Z, et al. Real-time quantification of single RNA translation dynamics in living cells. Science. 2016;352(6292):1425–9. doi:10.1126/science.aaf0899.

    Article  CAS  PubMed  Google Scholar 

  86. Pichon X, Bastide A, Safieddine A, Chouaib R, Samacoits A, Basyuk E, et al. Visualization of single endogenous polysomes reveals the dynamics of translation in live human cells. J Cell Biol. 2016;214(6):769–81. doi:10.1083/jcb.201605024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wu B, Eliscovich C, Yoon YJ, Singer RH. Translation dynamics of single mRNAs in live cells and neurons. Science. 2016;352(6292):1430–5. doi:10.1126/science.aaf1084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yan X, Hoek TA, Vale RD, Tanenbaum ME. Dynamics of translation of single mRNA molecules in vivo. Cell. 2016;165(4):976–89. doi:10.1016/j.cell.2016.04.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang C, Han B, Zhou R, Zhuang X. Real-time imaging of translation on single mRNA transcripts in live cells. Cell. 2016;165(4):990–1001. doi:10.1016/j.cell.2016.04.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

K. C. is supported by a National Science Foundation CAREER award (IOS-1254146) and is grateful for the support received from the Stony Brook University School of Medicine and Departments of Anesthesiology and Pharmacological Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Czaplinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Czaplinski, K. (2017). Techniques for Single-Molecule mRNA Imaging in Living Cells. In: Delgado-Morales, R. (eds) Neuroepigenomics in Aging and Disease. Advances in Experimental Medicine and Biology(), vol 978. Springer, Cham. https://doi.org/10.1007/978-3-319-53889-1_22

Download citation

Publish with us

Policies and ethics