Skip to main content

Chemical Inducible dCas9-Guided Editing of H3K27 Acetylation in Mammalian Cells

  • Protocol
  • First Online:
Epigenome Editing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1767))

Abstract

The ability to edit specific epigenetic modifications at defined gene loci is pivotal to understand the biological function of these epigenetic marks. Here we describe a new inducible method to integrate the dCas9-based genome targeting with abscisic acid (ABA)-based chemically induced proximity (CIP) technologies to modify histone tail modifications at specific genome loci in living cells. ABA leads to rapid hetero-dimerization of the PYL and ABI proteins, which can be individually fused to dCas9 and a histone-modifying enzyme core domain. In the presence of ABA and locus-specific sgRNAs, this histone-modifying activity can be recruited to a specific genome locus to achieve histone editing with perfect temporal control. Herein, we describe the use of this technique in HEK293T cells to control the recruitment of the p300 acetyltransferase core domain to the human IL1RN locus to ectopically increase the acetylation of H3K27 and induce the expression of IL1RN gene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128(4):635–638

    Article  CAS  Google Scholar 

  2. Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705

    Article  CAS  Google Scholar 

  3. Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447(7143):407–412

    Article  CAS  Google Scholar 

  4. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403(6765):41–45

    Article  CAS  Google Scholar 

  5. Bernstein BE, Meissner A, Lander ES (2007) The mammalian epigenome. Cell 128(4):669–681

    Article  CAS  Google Scholar 

  6. Leroy G et al (2013) A quantitative atlas of histone modification signatures from human cancer cells. Epigenetics Chromatin 6(1):20

    Article  CAS  Google Scholar 

  7. Zhou VW, Goren A, Bernstein BE (2011) Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet 12(1):7–18

    Article  Google Scholar 

  8. Bernstein BE et al (2005) Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120(2):169–181

    Article  CAS  Google Scholar 

  9. Jinek M et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    Article  CAS  Google Scholar 

  10. Mali P et al (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826

    Article  CAS  Google Scholar 

  11. Cong L et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823

    Article  CAS  Google Scholar 

  12. Mali P, Esvelt KM, Church GM (2013) Cas9 as a versatile tool for engineering biology. Nat Methods 10(10):957–963

    Article  CAS  Google Scholar 

  13. Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32(4):347–355

    Article  CAS  Google Scholar 

  14. Qi LS et al (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152(5):1173–1183

    Article  CAS  Google Scholar 

  15. Kearns NA et al (2015) Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nat Methods 12(5):401–403

    Article  CAS  Google Scholar 

  16. Hilton IB et al (2015) Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 33(5):510–517

    Article  CAS  Google Scholar 

  17. Fegan A et al (2010) Chemically controlled protein assembly: techniques and applications. Chem Rev 110(6):3315–3336

    Article  CAS  Google Scholar 

  18. DeRose R, Miyamoto T, Inoue T (2013) Manipulating signaling at will: chemically-inducible dimerization (CID) techniques resolve problems in cell biology. Pflugers Arch 465(3):409–417

    Article  CAS  Google Scholar 

  19. Liang FS, Ho WQ, Crabtree GR (2011) Engineering the ABA plant stress pathway for regulation of induced proximity. Sci Signal 4(164):rs2

    Article  Google Scholar 

  20. Hathaway NA et al (2012) Dynamics and memory of heterochromatin in living cells. Cell 149(7):1447–1460

    Article  CAS  Google Scholar 

  21. Demir F et al (2013) Arabidopsis nanodomain-delimited ABA signaling pathway regulates the anion channel SLAH3. Proc Natl Acad Sci U S A 110(20):8296–8301

    Article  CAS  Google Scholar 

  22. Zhao Y et al (2016) ABA receptor PYL9 promotes drought resistance and leaf senescence. Proc Natl Acad Sci U S A 113(7):1949–1954

    Article  CAS  Google Scholar 

  23. Delvecchio M et al (2013) Structure of the p300 catalytic core and implications for chromatin targeting and HAT regulation. Nat Struct Mol Biol 20(9):1040–1046

    Article  CAS  Google Scholar 

  24. Dancy BM, Cole PA (2015) Protein lysine acetylation by p300/CBP. Chem Rev 115(6):2419–2452

    Article  CAS  Google Scholar 

  25. Chen T et al (2017) Chemically controlled epigenome editing through an inducible dCas9 system. J Am Chem Soc 139(33):11337–11340

    Article  CAS  Google Scholar 

  26. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  CAS  Google Scholar 

  27. Perez-Pinera P et al (2013) RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods 10(10):973–976

    Article  CAS  Google Scholar 

  28. Wright CW, Guo ZF, Liang FS (2015) Light control of cellular processes by using photocaged abscisic acid. Chembiochem 16(2):254–261

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health R21 HG008776.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Sen Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gao, D., Liang, FS. (2018). Chemical Inducible dCas9-Guided Editing of H3K27 Acetylation in Mammalian Cells. In: Jeltsch, A., Rots, M. (eds) Epigenome Editing. Methods in Molecular Biology, vol 1767. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7774-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7774-1_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7773-4

  • Online ISBN: 978-1-4939-7774-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics