Skip to main content

Magnetic-Activated Cell Sorting for the Fast and Efficient Separation of Human and Rodent Schwann Cells from Mixed Cell Populations

  • Protocol
  • First Online:
Schwann Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1739))

Abstract

To date, magnetic-activated cell sorting (MACS) remains a powerful method to isolate distinct cell populations based on differential cell surface labeling. Optimized direct and indirect MACS protocols for cell immunolabeling are presented here as methods to divest Schwann cell (SC) cultures of contaminating cells (specifically, fibroblast cells) and isolate SC populations at different stages of differentiation. This chapter describes (1) the preparation of single-cell suspensions from established human and rat SC cultures, (2) the design and application of cell selection strategies using SC-specific (p75NGFR, O4, and O1) and fibroblast-specific (Thy-1) markers, and (3) the characterization of both the pre- and post-sorting cell populations. A simple protocol for the growth of hybridoma cell cultures as a source of monoclonal antibodies for cell surface immunolabeling of SCs and fibroblasts is provided as a cost-effective alternative for commercially available products. These steps allow for the timely and efficient recovery of purified SC populations without compromising the viability and biological activity of the cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brockes JP, Fields KL, Raff MC (1979) Studies on cultured rat Schwann cells. I. Establishment of purified populations from cultures of peripheral nerve. Brain Res 165(1):105–118

    Article  CAS  PubMed  Google Scholar 

  2. Calderon-Martinez D, Garavito Z, Spinel C, Hurtado H (2002) Schwann cell-enriched cultures from adult human peripheral nerve: a technique combining short enzymatic dissociation and treatment with cytosine arabinoside (Ara-C). J Neurosci Methods 114(1):1–8

    Article  CAS  PubMed  Google Scholar 

  3. Lehmann HC, Chen W, Mi R, Wang S, Liu Y, Rao M, Hoke A (2012) Human Schwann cells retain essential phenotype characteristics after immortalization. Stem Cells Dev 21(3):423–431. https://doi.org/10.1089/scd.2010.0513

    Article  CAS  PubMed  Google Scholar 

  4. Komiyama T, Nakao Y, Toyama Y, Asou H, Vacanti CA, Vacanti MP (2003) A novel technique to isolate adult Schwann cells for an artificial nerve conduit. J Neurosci Methods 122(2):195–200

    Article  PubMed  Google Scholar 

  5. Kaewkhaw R, Scutt AM, Haycock JW (2012) Integrated culture and purification of rat Schwann cells from freshly isolated adult tissue. Nat Protoc 7(11):1996–2004. https://doi.org/10.1038/nprot.2012.118

    Article  CAS  PubMed  Google Scholar 

  6. Levi AD BR, Lofgren JA, Meima L, Hefti F, Nikolics K, Sliwkowski MX (1995) The influence of heregulins on human Schwann cell proliferation. J Neurosci 15(2):1329–1340

    PubMed  Google Scholar 

  7. Casella GT, Bunge RP, Wood PM (1996) Improved method for harvesting human Schwann cells from mature peripheral nerve and expansion in vitro. Glia 17(4):327–338

    Article  CAS  PubMed  Google Scholar 

  8. Jirsova K, Sodaar P, Mandys V, Bar PR (1997) Cold jet: a method to obtain pure Schwann cell cultures without the need for cytotoxic, apoptosis-inducing drug treatment. J Neurosci Methods 78(1-2):133–137

    Article  CAS  PubMed  Google Scholar 

  9. Pannunzio ME, Jou IM, Long A, Wind TC, Beck G, Balian G (2005) A new method of selecting Schwann cells from adult mouse sciatic nerve. J Neurosci Methods 149(1):74–81. https://doi.org/10.1016/j.jneumeth.2005.05.004

    Article  PubMed  Google Scholar 

  10. Jin YQ, Liu W, Hong TH, Cao Y (2008) Efficient Schwann cell purification by differential cell detachment using multiplex collagenase treatment. J Neurosci Methods 170(1):140–148. https://doi.org/10.1016/j.jneumeth.2008.01.003

    Article  CAS  PubMed  Google Scholar 

  11. Wang HB, Wang XP, Zhong SZ, Shen ZL (2013) Novel method for culturing Schwann cells from adult mouse sciatic nerve in vitro. Mol Med Rep 7(2):449–453. https://doi.org/10.3892/mmr.2012.1177

    Article  PubMed  Google Scholar 

  12. Haastert K, Mauritz C, Chaturvedi S, Grothe C (2007) Human and rat adult Schwann cell cultures: fast and efficient enrichment and highly effective non-viral transfection protocol. Nat Protoc 2(1):99–104. https://doi.org/10.1038/nprot.2006.486

    Article  CAS  PubMed  Google Scholar 

  13. Tao Y (2013) Isolation and culture of Schwann cells. Methods Mol Biol 1018:93–104. https://doi.org/10.1007/978-1-62703-444-9_9

    Article  CAS  PubMed  Google Scholar 

  14. Manent J, Oguievetskaia K, Bayer J, Ratner N, Giovannini M (2003) Magnetic cell sorting for enriching Schwann cells from adult mouse peripheral nerves. J Neurosci Methods 123(2):167–173

    Article  PubMed  Google Scholar 

  15. Vroemen M, Weidner N (2003) Purification of Schwann cells by selection of p75 low affinity nerve growth factor receptor expressing cells from adult peripheral nerve. J Neurosci Methods 124(2):135–143

    Article  CAS  PubMed  Google Scholar 

  16. van Neerven SG, Krings L, Haastert-Talini K, Vogt M, Tolba RH, Brook G, Pallua N, Bozkurt A (2014) Human Schwann cells seeded on a novel collagen-based microstructured nerve guide survive, proliferate, and modify neurite outgrowth. Biomed Res Int 2014:493823. https://doi.org/10.1155/2014/493823

    PubMed  PubMed Central  Google Scholar 

  17. Andersen ND, Srinivas S, Pinero G, Monje PV (2016) A rapid and versatile method for the isolation, purification and cryogenic storage of Schwann cells from adult rodent nerves. Sci Rep 6:31781. https://doi.org/10.1038/srep31781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jessen K, Mirsky R (2005) The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci 6(9):671–682

    Article  CAS  PubMed  Google Scholar 

  19. Chandler C, Parsons L, Hosang M, Shooter E (1984) A monoclonal antibody modulates the interaction of nerve growth factor with PC12 cells. J Biol Chem 259(11):6882–6889

    CAS  PubMed  Google Scholar 

  20. Sommer I, Schachner M (1981) Monoclonal antibodies (O1 to O4) to oligodendrocyte cell surfaces: an immunocytological study in the central nervous system. Dev Biol 83(2):311–327

    Article  CAS  PubMed  Google Scholar 

  21. Sommer I, Schachner M (1982) Cell that are O4 antigen-positive and O1 antigen-negative differentiate into O1 antigen-positive oligodendrocytes. Neurosci Lett 29(2):183–188

    Article  CAS  PubMed  Google Scholar 

  22. Soto J, Monje P (2017) Axon contact-driven Schwann cell dedifferentiation. Glia 65:864–882. https://doi.org/10.1002/glia.23131

    Article  PubMed  Google Scholar 

  23. Piñero G, Berg R, Andersen N, Setton-Avruj P, Monje P (2016) Lithium reversibly inhibits Schwann cell proliferation and differentiation without inducing myelin loss. Mol Neurobiol 10(2). https://doi.org/10.1007/s12035-016-0262-z

  24. Bacallao K, Monje P (2015) Requirement of cAMP signaling for Schwann cell differentiation restricts the onset of myelination. PLoS One 10(2). https://doi.org/10.1371/journal.pone.0116948

  25. Monje P, Bartlett Bunge M, Wood P (2006) Cyclic AMP synergistically enhances neuregulin-dependent ERK and Akt activation and cell cycle progression in Schwann cells. Glia 53(6):649–659

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful for the technical assistance provided by Dr. Ketty Bacallao and Ms. Blanche Kuo. We thank Dr. James Guest for critically reviewing the manuscript. The work presented in this chapter was generously supported by the NIH-NINDS (NS084326), The Craig Neilsen Foundation (339576), The Miami Project to Cure Paralysis, and The Buoniconti Fund. The authors declare no conflicts of interest with the contents of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula V. Monje .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ravelo, K.M., Andersen, N.D., Monje, P.V. (2018). Magnetic-Activated Cell Sorting for the Fast and Efficient Separation of Human and Rodent Schwann Cells from Mixed Cell Populations. In: Monje, P., Kim, H. (eds) Schwann Cells. Methods in Molecular Biology, vol 1739. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7649-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7649-2_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7648-5

  • Online ISBN: 978-1-4939-7649-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics