Skip to main content

Introduction to MRI Physics

  • Protocol
  • First Online:
Preclinical MRI

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1718))

Abstract

Magnetic resonance imaging (MRI) is an imaging technique derived from radiofrequency (RF) signals of proton that are magnetized by a strong magnetic field. These protons typically originate from water, fat, or metabolites. The application of RF pulses is used to excite the magnetization, whereas pulsed magnetic field gradients are used to provide spatial localization. This chapter describes the fundamental principles giving rise to MR images. Furthermore, the connection between relaxation and image contrast is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ardenkjær-Larsen JH, Fridlund B, Gram A, Hansson G, Hansson L, Lerche MH, Servin R, Thaning M, Golman K (2003) Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. Proc Natl Acad Sci 100(18):10158–10163

    Article  PubMed  PubMed Central  Google Scholar 

  2. Golman K, Lerche M, Pehrson R, Ardenkjaer-Larsen JH (2006) Metabolic imaging by hyperpolarized 13C magnetic resonance imaging for in vivo tumor diagnosis. Cancer Res 66(22):10855–10860

    Article  CAS  PubMed  Google Scholar 

  3. Rabi II, Zacharias JR, Millman S, Kusch P (1938) A new method of measuring nuclear magnetic moment. Phys Rev 53(4):318

    Article  CAS  Google Scholar 

  4. Bloch F (1946) Nuclear induction. Phys Rev 70(7–8):460

    Article  CAS  Google Scholar 

  5. Damadian R (1971) Tumor detection by nuclear magnetic resonance. Science 171(3976):1151–1153

    Article  CAS  PubMed  Google Scholar 

  6. Lauterbur PC (1973) Image formation by induced local interactions. Examples employing nuclear magnetic resonance. Nature 242:190–191

    Article  CAS  Google Scholar 

  7. Pykett I, Rosen B (1983) Nuclear magnetic resonance: in vivo proton chemical shift imaging. Work in progress. Radiology 149(1):197–201

    Article  CAS  PubMed  Google Scholar 

  8. Mansfield P (1984) Spatial mapping of the chemical shift in NMR. Magn Reson Med 1(3):370–386

    Article  CAS  PubMed  Google Scholar 

  9. Posse S, DeCarli C, Le Bihan D (1994) Three-dimensional echo-planar MR spectroscopic imaging at short echo times in the human brain. Radiology 192(3):733–738

    Article  CAS  PubMed  Google Scholar 

  10. Hahn EL (1950) Spin echoes. Phys Rev 80(4):580

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary V. Martinez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Martinez, G.V. (2018). Introduction to MRI Physics. In: García Martín, M., López Larrubia, P. (eds) Preclinical MRI. Methods in Molecular Biology, vol 1718. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7531-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7531-0_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7530-3

  • Online ISBN: 978-1-4939-7531-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics