Skip to main content

Alkaline Denaturing Southern Blot Analysis to Monitor Double-Strand Break Processing

  • Protocol
  • First Online:
Genome Instability

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1672))

Abstract

Generation of 3′ single-stranded DNA (ssDNA) tails at the ends of a double-strand break (DSB) is essential to repair the break through accurate homology-mediated repair pathways. Several methods have been developed to measure ssDNA accumulation at a DSB in the budding yeast Saccharomyces cerevisiae. Here, we describe one of these assays, which is based on the inability of restriction enzymes to cleave ssDNA. Digestion of genomic DNA prepared at different time points after DSB generation leads to the formation of ssDNA fragments whose length increases as the 5′ strand degradation proceeds beyond restriction sites. After the separation by electrophoresis on alkaline denaturing agarose gel, these ssDNA fragments can be visualized by hybridization with an RNA probe that anneals with the 3′-undegraded DSB strand. This assay allows a direct and comprehensive visualization of DSB end processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Symington LS, Rothstein R, Lisby M (2014) Mechanisms and regulation of mitotic recombination in Saccharomyces cerevisiae. Genetics 198:795–835. doi:10.1534/genetics.114.166140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mehta A, Haber JE (2014) Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harb Perspect Biol 6(9):a016428. doi:10.1101/cshperspect.a016428

    Article  PubMed  PubMed Central  Google Scholar 

  3. Symington LS (2014) End resection at double-strand breaks: mechanism and regulation. Cold Spring Harb Perspect Biol 6(8):a016436. doi:10.1101/cshperspect.a016436

    Article  PubMed  PubMed Central  Google Scholar 

  4. Villa M, Cassani C, Gobbini E, Bonetti D, Longhese MP (2016) Coupling end resection with the checkpoint response at DNA double-strand breaks. Cell Mol Life Sci 73(19):3655–3663. (in press)

    Article  CAS  PubMed  Google Scholar 

  5. White CI, Haber JE (1990) Intermediates of recombination during mating type switching in Saccharomyces cerevisiae. EMBO J 9:663–673

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee SE, Moore JK, Holmes A, Umezu K, Kolodner RD, Haber JE (1998) Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94:399–409. doi:10.1016/s0092-8674(00)81482-8

    Article  CAS  PubMed  Google Scholar 

  7. Clerici M, Mantiero D, Lucchini G, Longhese MP (2005) The Saccharomyces cerevisiae Sae2 protein promotes resection and bridging of double strand break ends. J Biol Chem 280:38631–38638

    Article  CAS  PubMed  Google Scholar 

  8. Manfrini N, Guerini I, Citterio A, Lucchini G, Longhese MP (2010) Processing of meiotic DNA double strand breaks requires cyclin-dependent kinase and multiple nucleases. J Biol Chem 285:11628–11637. doi:10.1074/jbc.M110.104083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bonetti D, Martina M, Clerici M, Lucchini G, Longhese MP (2009) Multiple pathways regulate 3′ overhang generation at S. cerevisiae telomeres. Mol Cell 35:70–81. doi:10.1016/j.molcel.2009.05.015

    Article  CAS  PubMed  Google Scholar 

  10. Lee CS, Haber JE (2015) Mating-type gene switching in Saccharomyces cerevisiae. Microbiol Spectr 3(2):MDNA3-0013-2014. doi:10.1128/microbiolspec.MDNA3-0013-2014

    Article  PubMed  Google Scholar 

  11. Schenborn ET, Mierendorf RC (1985) A novel transcription property of SP6 and T7 RNA polymerases: dependence on template structure. Nucleic Acids Res 13:6223–6236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aylon Y, Liefshitz B, Kupiec M (2004) The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle. EMBO J 23:4868–4875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ira G, Pellicioli A, Balijja A, Wang X, Fiorani S, Carotenuto W, Liberi G, Bressan D, Wan L, Hollingsworth NM, Haber JE, Foiani M (2004) DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature 431:1011–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chan RK, Otte CA (1982) Physiological characterization of Saccharomyces cerevisiae mutants supersensitive to G1 arrest by a factor and alpha factor pheromones. Mol Cell Biol 2:21–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Trovesi C, Falcettoni M, Lucchini G, Clerici M, Longhese MP (2011) Distinct Cdk1 requirements during single-strand annealing, noncrossover, and crossover recombination. PLoS Genet 7(8):e1002263. doi:10.1371/journal.pgen.1002263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pellicioli A, Lee SE, Lucca C, Foiani M, Haber JE (2001) Regulation of Saccharomyces Rad53 checkpoint kinase during adaptation from DNA damage-induced G2/M arrest. Mol Cell 7:293–300

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank J. Haber (Brandeis University) for the JKM139 yeast strain, and M. P. Longhese and G. Lucchini for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michela Clerici .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Colombo, C.V., Menin, L., Clerici, M. (2018). Alkaline Denaturing Southern Blot Analysis to Monitor Double-Strand Break Processing. In: Muzi-Falconi, M., Brown, G. (eds) Genome Instability. Methods in Molecular Biology, vol 1672. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7306-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7306-4_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7305-7

  • Online ISBN: 978-1-4939-7306-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics