Optimizing Expression and Solubility of Proteins in E. coli Using Modified Media and Induction Parameters

  • Troy Taylor
  • John-Paul Denson
  • Dominic EspositoEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1586)


The major goal of any protein expression experiment is to combine the maximum production per cell of soluble protein with the highest possible cell density to most efficiently obtain high yields of protein. A large number of parameters can be optimized in these experiments, but one of the most interesting parameters that have a strong effect on both per cell productivity and cell density is the cellular growth media coupled to the expression induction process. Using specialized media and testing multiple induction conditions, it is possible to significantly enhance the production of heterologous proteins from E. coli.

Key words

Protein expression Growth media Autoinduction IPTG Solubility 



This work has been funded in whole or in part with federal funds from the National Cancer Institute, National Institutes of Health, under contract HHSN261200800001E. The content of this chapter does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government.


  1. 1.
    Studier FW, Rosenberg AH, Dunn JJ et al (1990) Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185:60–89CrossRefPubMedGoogle Scholar
  2. 2.
    Esposito D, Chatterjee DK (2006) Enhancement of soluble protein expression through the use of fusion tags. Curr Opin Biotechnol 17:353–358CrossRefPubMedGoogle Scholar
  3. 3.
    Huang CJ, Lin H, Yang X (2013) Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. J Ind Microbiol Biotechnol 39:383–399CrossRefGoogle Scholar
  4. 4.
    Burgess-Brown NA, Mahajan P, Strain-Damerell C et al (2014) Medium-throughput production of recombinant human proteins: protein production in E. coli. Methods Mol Biol 1091:73–94CrossRefPubMedGoogle Scholar
  5. 5.
    Losen M, Frolich B, Pohl M et al (2004) Effect of oxygen limitation and medium composition on Escherichia coli fermentation in shake-flask cultures. Biotechnol Prog 20:1062–1068CrossRefPubMedGoogle Scholar
  6. 6.
    Dyson MR, Shadbolt SP, Vincent KJ et al (2004) Production of soluble mammalian proteins in Escherichia coli: identification of protein features that correlate with successful expression. BMC Biotechnol 4:32CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Studier FW (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41:207–234CrossRefPubMedGoogle Scholar
  8. 8.
    Vera A, Gonzalez-Montalban N, Aris A et al (2007) The conformational quality of insoluble recombinant proteins is enhanced at low growth temperatures. Biotechnol Bioeng 96:1101–1106CrossRefPubMedGoogle Scholar
  9. 9.
    Hartley JL, Temple GF, Brasch MA (2000) DNA cloning using in vitro site-specific recombination. Genome Res 10:1788–1795CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Esposito D, Garvey LA, Chakiath CS (2009) Gateway cloning for protein expression. Methods Mol Biol 498:31–54CrossRefPubMedGoogle Scholar
  11. 11.
    Fox JD, Routzahn KM, Bucher MH et al (2003) Maltodextrin-binding proteins from diverse bacteria and archaea are potent solubility enhancers. FEBS Lett 537:53–57CrossRefPubMedGoogle Scholar
  12. 12.
    Grodberg J, Dunn JJ (1988) ompT encodes the Escherichia coli outer membrane protease that cleaves T7 RNA polymerase during purification. J Bacteriol 170:1245–1253CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Michel E, Wuthrich K (2012) High-yield Escherichia coli-based cell-free expression of human proteins. J Biomol NMR 53:43–51CrossRefPubMedGoogle Scholar
  14. 14.
    Welch M, Govindarajan S, Ness JE et al (2009) Design parameters to control synthetic gene expression in Escherichia coli. PLoS One 4:e7002CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hanahan D, Jessee J, Bloom FR (1991) Plasmid transformation of Escherichia coli and other bacteria. Methods Enzymol 204:63–113CrossRefPubMedGoogle Scholar
  16. 16.
    Gillette WK, Esposito D, Taylor TE et al (2010) Purify first: rapid expression and purification of proteins from XMRV. Protein Expr Purif 76:238–247CrossRefPubMedGoogle Scholar
  17. 17.
    Kapust RB, Tözsér J, Fox JD et al (2001) Tobacco etch virus protease: mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency. Protein Eng 14:993–1000CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Troy Taylor
    • 1
  • John-Paul Denson
    • 1
  • Dominic Esposito
    • 1
    Email author
  1. 1.Protein Expression Laboratory, Cancer Research Technology ProgramFrederick National Laboratory for Cancer ResearchFrederickUSA

Personalised recommendations