Mitochondria pp 293-314 | Cite as

Analysis of Yeast Mitochondria by Electron Microscopy

  • Ann-Katrin Unger
  • Stefan Geimer
  • Max Harner
  • Walter Neupert
  • Benedikt Westermann
Part of the Methods in Molecular Biology book series (MIMB, volume 1567)


Budding yeast Saccharomyces cerevisiae represents a widely used model organism for the study of mitochondrial biogenesis and architecture. Electron microscopy is an essential tool in the analysis of cellular ultrastructure and the precise localization of proteins to organellar subcompartments. We provide here detailed protocols for the analysis of yeast mitochondria by transmission electron microscopy: (1) chemical fixation and Epon embedding of yeast cells and isolated mitochondria, and (2) cryosectioning and immunolabeling of yeast cells and isolated mitochondria according to the Tokuyasu method.

Key words

Immunoelectron microscopy Mitochondria Organelle architecture Saccharomyces cerevisiae Tokuyasu cryosectioning Transmission electron microscopy 



We thank Fulvio Reggiori and Muriel Mari (University Medical Centre Utrecht, The Netherlands) for advice and excellent training in cryo-sectioning, Rita Grotjahn for technical assistance, and Anja Heublein for photography. This work was supported by the Elitenetzwerk Bayern and a Max-Planck-Fellowship to A.-K.U. and grants of the Deutsche Forschungsgemeinschaft to B.W.


  1. 1.
    Zick M, Rabl R, Reichert AS (2009) Cristae formation-linking ultrastructure and function of mitochondria. Biochim Biophys Acta 1793(1):5–19. doi: 10.1016/j.bbamcr.2008.06.013 CrossRefPubMedGoogle Scholar
  2. 2.
    Frey TG, Mannella CA (2000) The internal structure of mitochondria. Trends Biochem Sci 25(7):319–324CrossRefPubMedGoogle Scholar
  3. 3.
    Mannella CA (2006) Structure and dynamics of the mitochondrial inner membrane cristae. Biochim Biophys Acta 1763(5–6):542–548. doi: 10.1016/j.bbamcr.2006.04.006 CrossRefPubMedGoogle Scholar
  4. 4.
    Neupert W (2012) SnapShot: mitochondrial architecture. Cell 149(3):722–722. doi: 10.1016/j.cell.2012.04.010e721CrossRefPubMedGoogle Scholar
  5. 5.
    Rutter J, Hughes AL (2015) Power(2): the power of yeast genetics applied to the powerhouse of the cell. Trends Endocrinol Metab 26(2):59–68. doi: 10.1016/j.tem.2014.12.002 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Neupert W (2015) A perspective on transport of proteins into mitochondria: a myriad of open questions. J Mol Biol 427(6 Pt A):1135–1158. doi: 10.1016/j.jmb.2015.02.001 CrossRefPubMedGoogle Scholar
  7. 7.
    Westermann B (2010) Mitochondrial dynamics in model organisms: what yeasts, worms and flies have taught us about fusion and fission of mitochondria. Semin Cell Dev Biol 21(6):542–549. doi: 10.1016/j.semcdb.2009.12.003 CrossRefPubMedGoogle Scholar
  8. 8.
    Westermann B (2014) Mitochondrial inheritance in yeast. Biochim Biophys Acta 1837(7):1039–1046. doi: 10.1016/j.bbabio.2013.10.005 CrossRefPubMedGoogle Scholar
  9. 9.
    Pfanner N, van der Laan M, Amati P, Capaldi RA, Caudy AA, Chacinska A, Darshi M, Deckers M, Hoppins S, Icho T, Jakobs S, Ji J, Kozjak-Pavlovic V, Meisinger C, Odgren PR, Park SK, Rehling P, Reichert AS, Sheikh MS, Taylor SS, Tsuchida N, van der Bliek AM, van der Klei IJ, Weissman JS, Westermann B, Zha J, Neupert W, Nunnari J (2014) Uniform nomenclature for the mitochondrial contact site and cristae organizing system. J Cell Biol 204(7):1083–1086. doi: 10.1083/jcb.201401006 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hoppins S, Collins SR, Cassidy-Stone A, Hummel E, Devay RM, Lackner LL, Westermann B, Schuldiner M, Weissman JS, Nunnari J (2011) A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria. J Cell Biol 195(2):323–340. doi: 10.1083/jcb.201107053 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Harner M, Körner C, Walther D, Mokranjac D, Kaesmacher J, Welsch U, Griffith J, Mann M, Reggiori F, Neupert W (2011) The mitochondrial contact site complex, a determinant of mitochondrial architecture. EMBO J 30(21):4356–4370. doi: 10.1038/emboj.2011.379 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    von der Malsburg K, Müller JM, Bohnert M, Oeljeklaus S, Kwiatkowska P, Becker T, Loniewska-Lwowska A, Wiese S, Rao S, Milenkovic D, Hutu DP, Zerbes RM, Schulze-Specking A, Meyer HE, Martinou JC, Rospert S, Rehling P, Meisinger C, Veenhuis M, Warscheid B, van der Klei IJ, Pfanner N, Chacinska A, van der Laan M (2011) Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis. Dev Cell 21(4):694–707. doi: 10.1016/j.devcel.2011.08.026 CrossRefPubMedGoogle Scholar
  13. 13.
    Alkhaja AK, Jans DC, Nikolov M, Vukotic M, Lytovchenko O, Ludewig F, Schliebs W, Riedel D, Urlaub H, Jakobs S, Deckers M (2012) MINOS1 is a conserved component of mitofilin complexes and required for mitochondrial function and cristae organization. Mol Biol Cell 23(2):247–257. doi: 10.1091/mbc.E11-09-0774 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Altmann K, Frank M, Neumann D, Jakobs S, Westermann B (2008) The class V myosin motor protein, Myo2, plays a major role in mitochondrial motility in Saccharomyces cerevisiae. J Cell Biol 181(1):119–130CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hammermeister M, Schödel K, Westermann B (2010) Mdm36 is a mitochondrial fission-promoting protein in Saccharomyces cerevisiae. Mol Biol Cell 21(14):2443–2452CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Osman C, Haag M, Potting C, Rodenfels J, Dip PV, Wieland FT, Brügger B, Westermann B, Langer T (2009) The genetic interactome of prohibitins links their function to cardiolipin and phosphatidylethanolamine in mitochondria. J Cell Biol 184:583–596CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Connerth M, Tatsuta T, Haag M, Klecker T, Westermann B, Langer T (2012) Intramitochondrial transport of phosphatidic acid in yeast by a lipid transfer protein. Science 338(6108):815–818. doi: 10.1126/science.1225625 CrossRefPubMedGoogle Scholar
  18. 18.
    Harner ME, Unger AK, Izawa T, Walther DM, Ozbalci C, Geimer S, Reggiori F, Brügger B, Mann M, Westermann B, Neupert W (2014) Aim24 and MICOS modulate respiratory function, tafazzin-related cardiolipin modification and mitochondrial architecture. eLife 3:e01684. doi: 10.7554/eLife.01684 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Klecker T, Scholz D, Förtsch J, Westermann B (2013) The yeast cell cortical protein Num1 integrates mitochondrial dynamics into cellular architecture. J Cell Sci 126(Pt 13):2924–2930. doi: 10.1242/jcs.126045 CrossRefPubMedGoogle Scholar
  20. 20.
    Förtsch J, Hummel E, Krist M, Westermann B (2011) The myosin-related motor protein Myo2 is an essential mediator of bud-directed mitochondrial movement in yeast. J Cell Biol 194(3):473–488CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Perkins EM, McCaffery JM (2007) Conventional and immunoelectron microscopy of mitochondria. Methods Mol Biol 372:467–483. doi: 10.1007/978-1-59745-365-3_33 CrossRefPubMedGoogle Scholar
  22. 22.
    Tokuyasu KT (1973) A technique for ultracryotomy of cell suspensions and tissues. J Cell Biol 57(2):551–565CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Luft JH (1961) Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol 9:409–414CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Palade GE (1952) A study of fixation for electron microscopy. J Exp Med 95(3):285–298CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Bauer C, Herzog V, Bauer MF (2001) Improved technique for electron microscope visualization of yeast membrane structure. Microsc Microanal 7(6):530–534PubMedGoogle Scholar
  26. 26.
    Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Altmann K, Dürr M, Westermann B (2007) Saccharomyces cerevisiae as a model organism to study mitochondrial biology: general considerations and basic procedures. Methods Mol Biol 372:81–90CrossRefPubMedGoogle Scholar
  28. 28.
    Weckbecker D, Herrmann JM (2013) Methods to study the biogenesis of membrane proteins in yeast mitochondria. Methods Mol Biol 1033:307–322. doi: 10.1007/978-1-62703-487-6_20 CrossRefPubMedGoogle Scholar
  29. 29.
    Meeusen S, McCaffery JM, Nunnari J (2004) Mitochondrial fusion intermediates revealed in vitro. Science 305(5691):1747–1752CrossRefPubMedGoogle Scholar
  30. 30.
    Griffith J, Mari M, De Maziere A, Reggiori F (2008) A cryosectioning procedure for the ultrastructural analysis and the immunogold labelling of yeast Saccharomyces cerevisiae. Traffic 9(7):1060–1072. doi: 10.1111/j.1600-0854.2008.00753.x CrossRefPubMedGoogle Scholar
  31. 31.
    van Tuinen E, Riezman H (1987) Immunolocalization of glyceraldehyde-3-phosphate dehydrogenase, hexokinase, and carboxypeptidase Y in yeast cells at the ultrastructural level. J Histochem Cytochem 35(3):327–333CrossRefPubMedGoogle Scholar
  32. 32.
    Sikorski RS, Hieter P (1989) A system of shuttle vectors and host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Ann-Katrin Unger
    • 1
  • Stefan Geimer
    • 1
  • Max Harner
    • 2
  • Walter Neupert
    • 2
  • Benedikt Westermann
    • 1
  1. 1.Institut für ZellbiologieUniversität BayreuthBayreuthGermany
  2. 2.Max Planck Institut für BiochemieMartinsriedGermany

Personalised recommendations