Skip to main content

Conventional and Immunoelectron Microscopy of Mitochondria

  • Protocol
Mitochondria

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 372))

Abstract

Electron microscopy (EM) has been a central tool in delineating the subcellular organization and function of the eukaryotic cell. It has provided valuable information on the organization of the Golgi complex; the polarized distribution of proteins on the plasma membrane; and fundamental insights into the essential structure and function of mitochondria beginning with the first EM observations of Claude and Fullam on isolated mitochondria in 1944. Most significant for this volume is the contribution immunoelectron microscopy (IEM) has made in the study of mitochondrial dynamics and in demonstrating the localizations of key mitochondrial proteins in yeast, including, though not limited to, Dnm1p, Fiz1p, and Mgm1p. This chapter is not intended to provide a comprehensive review of all EM and IEM methods as there are a number of excellent books and reviews already available on these topics. Rather, this chapter provides detailed protocols of conventional EM and IEM methods successfully utilized in our center for the examination and analysis of mitochondria in yeast and mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Geuze, H. J. (1999) A future for EM in cell biology? Trends Cell Biol. 9, 92–93.

    Article  CAS  PubMed  Google Scholar 

  2. Griffiths, G. (2001) Bringing electron microscopy back into focus for cell biology. Trends Cell Biol. 11, 153–154.

    Article  CAS  PubMed  Google Scholar 

  3. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., and Prasher, D. C. (1994) Green fluorescent protein as a marker for gene expression. Science 263, 802–805.

    Article  CAS  PubMed  Google Scholar 

  4. Wang, L., Jackson, W. C., Steinbach, P. A., and Tsien, R. Y. (2004) Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc. Natl. Acad. Sci. U. S. A. 101, 16,745–16,749.

    Article  CAS  PubMed  Google Scholar 

  5. Geuze, H. J., Slot, J. W., Strous, G. J., Lodish, H. F., and Schwartz, A. L. (1983) Intracellular site of asialoglycoprotein receptor-ligand uncoupling: double-label immunoelectron microscopy during receptor-mediated endocytosis. Cell 32, 277–287.

    Article  CAS  PubMed  Google Scholar 

  6. Wall, D. A., Wilson, G., and Hubbard, A. L. (1980). The galactose-specific recognition system of mammalian liver: the route of ligand internalization in rat hepatocytes. Cell 21, 79–93.

    Article  CAS  PubMed  Google Scholar 

  7. Willingham, M. C. and Pastan, I. (1980) The receptosome: an intermediate organelle of receptor mediated endocytosis in cultured fibroblasts. Cell 21, 67–77.

    Article  CAS  PubMed  Google Scholar 

  8. Brown, W. J., Goodhouse, J., and Farqubar, M. G. (1986). Mannose-6-phosphate receptors for lysosomal enzymes cycle between the Golgi complex and endosomes. J. Cell Biol. 103, 1235–1247.

    Article  CAS  PubMed  Google Scholar 

  9. Roth, J. and Berger, E. G. (1982). Immunocytochemical localization of galactosyl-transferase in HeLa cells: codistribution with thiamine pyrophosphatase in trans-Golgi cisternae. J. Cell Biol. 92, 223–229.

    Article  Google Scholar 

  10. Roth, J., Taatjes, D. J., Lucocq, J. M., Weinstein, J., and Paulson, J. C. (1985). Demonstration of an extensive trans-tubular network continuous with the Golgi apparatus stack that may function in glycosylation. Cell 43, 287–295.

    Article  CAS  PubMed  Google Scholar 

  11. Farquhar, M. G., Hendricks, L. H., Noda, T., and Velasco, A. (1992). in Electron Microscopic Cytochemistry and Immunocytochemistry in Biomedicine (Ogawa, K. and Barka, T., eds.), CRC Press, Boca Raton, FL, p. 441–479.

    Google Scholar 

  12. Stow, J. L., de Almeida, J. B., Narula, F. J., Holtzman, E. J., Ercolani, L., and Ausiello, D. A. (1991). A heterotrimeric G protein, G alpha i-3, on Golgi membranes regulates the secretion of a heparan sulfate proteoglycan in LLC-PK1 epithelial cells. J. Cell Biol. 114, 1113–1124.

    Article  CAS  PubMed  Google Scholar 

  13. Nelson, J. (1992) Regulation of cell surface polarity from bacteria to mammals. Science 258, 948–955.

    Article  CAS  PubMed  Google Scholar 

  14. Rodriguez-Boulan, E. and Nelson, W. J. (1989) Morphogenesis of the polarized epithelial cell phenotype. Science 245, 718–725.

    Article  CAS  PubMed  Google Scholar 

  15. Claude, A. and Fullam, E. F. (1945) An electron microscope study of isolated mitochondria, method and preliminary results. J. Exp. Med. 81, 51–62.

    Article  CAS  PubMed  Google Scholar 

  16. Palade, G. E. (1952) The fine structure of mitochondria. Anat. Rec. 114, 427–451.

    Article  CAS  PubMed  Google Scholar 

  17. Koshiba, T., Detmer, S. A., Kaiser, J. T., Chen, H., McCaffery, J. M., and Chan, D. C. (2004) Structural basis of mitochondrial tethering by mitofusin complexes. Science 305, 858–862.

    Article  CAS  PubMed  Google Scholar 

  18. Bleazard, W., McCaffery, J. M., King, E. J., et al. (1999) The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast. Nat. Cell Biol. 1, 298–304.

    Article  CAS  PubMed  Google Scholar 

  19. Mozdy, A. D., McCaffery, J. M., and Shaw, J. M. (2000) Dnm1p GTPase-mediated mitochondrial fission is a multi-step process requiring the novel integral membrane component Fis1p. J. Cell Biol. 151, 367–380.

    Article  CAS  PubMed  Google Scholar 

  20. Meeusen, S., McCaffery, J. M., and Nunnari, J. (2004) Mitochondrial fusion intermediates revealed in vitro. Science 305, 1747–1752.

    Article  CAS  PubMed  Google Scholar 

  21. Palade, G. E. (1952) A study of fixation for electron microscopy. J. Exp. Med. 95, 285–298.

    Article  CAS  PubMed  Google Scholar 

  22. McLean, W. and Nakane, P. F. (1974) Periodate-lysine-paraformaldehyde fixative. A new fixation for immunoelectron microscopy. J. Histochem. Cytochem. 22, 1077–1083.

    CAS  PubMed  Google Scholar 

  23. Luft, J. H. (1956) Permanganate; a new fixative for electron microscopy. J. Biophys. Biochem. Cytol. 2, 799–802.

    Article  CAS  PubMed  Google Scholar 

  24. Willingham, M. C. and Rutherford, A. V. (1984) The use of osmium-thiocarbohydrazide-osmium (OTO) and ferrocyanide-reduced osmium methods to enhance membrane contrast and preservation in cultured cells. J. Histochem. Cytochem. 32, 455–460.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Perkins, E.M., McCaffery, J.M. (2007). Conventional and Immunoelectron Microscopy of Mitochondria. In: Leister, D., Herrmann, J.M. (eds) Mitochondria. Methods in Molecular Biology™, vol 372. Humana Press. https://doi.org/10.1007/978-1-59745-365-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-365-3_33

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-667-2

  • Online ISBN: 978-1-59745-365-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics