Advertisement

ERK Signaling pp 289-301 | Cite as

Probing Chromatin Modifications in Response to ERK Signaling

  • Ozgur Oksuz
  • Wee-Wei Tee
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1487)

Abstract

Chromatin immunoprecipitation (ChIP) is a technique used to determine the association of proteins or histone modifications with chromatin regions in living cells or tissues, and is used extensively in the chromatin biology field to study transcriptional and epigenetic mechanisms. Increasing evidence points to an epigenetic coordination of signaling cascades, such as ERK, that regulate key processes in development and disease, revealing novel principles of gene regulation. Here we describe a detailed protocol for performing chromatin immunoprecipitation followed by qPCR (ChIP-qPCR) for probing histone modifications regulated by ERK signaling in mouse ESCs.

Key words

Chromatin immunoprecipitation Histone modifications Polycomb ERK signaling Spike-in normalization ChIP-Western blot ChIP-qPCR 

Notes

Acknowledgments

Work in the W.-W.T. lab is supported by research fundings from the Singapore National Research Foundation Fellowship as well as the Biomedical Research Council, Agency for Science, Technology and Research.

References

  1. 1.
    Campos EI, Reinberg D (2009) Histones: annotating chromatin. Annu Rev Genet 43:559–599CrossRefPubMedGoogle Scholar
  2. 2.
    Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705CrossRefPubMedGoogle Scholar
  3. 3.
    Badeaux AI, Shi Y (2013) Emerging roles for chromatin as a signal integration and storage platform. Nat Rev Mol Cell Biol 14:211–224CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Johnson DG, Dent SY (2013) Chromatin: receiver and quarterback for cellular signals. Cell 152:685–689CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bonni A, Brunet A, West AE et al (1999) Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286:1358–1362CrossRefPubMedGoogle Scholar
  6. 6.
    Samatar AA, Poulikakos PI (2014) Targeting RAS-ERK signalling in cancer: promises and challenges. Nat Rev Drug Discov 13:928–942CrossRefPubMedGoogle Scholar
  7. 7.
    Khokhlatchev AV, Canagarajah B, Wilsbacher J et al (1998) Phosphorylation of the MAP kinase ERK2 promotes its homodimerization and nuclear translocation. Cell 93:605–615CrossRefPubMedGoogle Scholar
  8. 8.
    Marais R, Wynne J, Treisman R (1993) The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain. Cell 73:381–393CrossRefPubMedGoogle Scholar
  9. 9.
    Hu S, Xie Z, Onishi A et al (2009) Profiling the human protein-DNA interactome reveals ERK2 as a transcriptional repressor of interferon signaling. Cell 139:610–622CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Klein AM, Zaganjor E, Cobb MH (2013) Chromatin-tethered MAPKs. Curr Opin Cell Biol 25:272–277CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Tee WW, Shen SS, Oksuz O et al (2014) Erk1/2 activity promotes chromatin features and RNAPII phosphorylation at developmental promoters in mouse ESCs. Cell 156:678–690CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Trigon S, Serizawa H, Conaway JW et al (1998) Characterization of the residues phosphorylated in vitro by different C-terminal domain kinases. J Biol Chem 273:6769–6775CrossRefPubMedGoogle Scholar
  13. 13.
    Deng C, Kaplan MJ, Yang J et al (2001) Decreased Ras-mitogen-activated protein kinase signaling may cause DNA hypomethylation in T lymphocytes from lupus patients. Arthritis Rheum 44:397–407CrossRefPubMedGoogle Scholar
  14. 14.
    Gorelik G, Richardson B (2009) Aberrant T cell ERK pathway signaling and chromatin structure in lupus. Autoimmun Rev 8:196–198CrossRefPubMedGoogle Scholar
  15. 15.
    Grabole N, Tischler J, Hackett JA, Kim S, Tang F, Leitch HG, Magnusdottir E, Surani MA (2013) Prdm14 promotes germline fate and naive pluripotency by repressing FGF signalling and DNA methylation. EMBO Rep 14:629–637CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Leitch HG, McEwen KR, Turp A et al (2013) Naive pluripotency is associated with global DNA hypomethylation. Nat Struct Mol Biol 20:311–316CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Yamaji M, Ueda J, Hayashi K et al (2013) PRDM14 ensures naive pluripotency through dual regulation of signaling and epigenetic pathways in mouse embryonic stem cells. Cell Stem Cell 12:368–382CrossRefPubMedGoogle Scholar
  18. 18.
    Chen Y, Gorelik GJ, Strickland FM et al (2010) Decreased ERK and JNK signaling contribute to gene overexpression in “senescent” CD4 + CD28- T cells through epigenetic mechanisms. J Leukoc Biol 87:137–145CrossRefPubMedGoogle Scholar
  19. 19.
    Nabet B, Broin PB, Reyes JM, Shieh K, Lin CY, Will CM, Popovic R, Ezponda T, Bradner JE, Golden AA, Licht JD (2015) Deregulation of the Ras-Erk signaling axis modulates the enhancer landscape. Cell Rep 12:1300–1313CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lanner F, Rossant J (2010) The role of FGF/Erk signaling in pluripotent cells. Development 137:3351–3360CrossRefPubMedGoogle Scholar
  21. 21.
    Goke J, Chan YS, Yan J et al (2013) Genome-wide kinase-chromatin interactions reveal the regulatory network of ERK signaling in human embryonic stem cells. Mol Cell 50:844–855CrossRefPubMedGoogle Scholar
  22. 22.
    Margueron R, Reinberg D (2011) The polycomb complex PRC2 and its mark in life. Nature 469:343–349CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Tee WW, Reinberg D (2014) Chromatin features and the epigenetic regulation of pluripotency states in ESCs. Development 141: 2376–2390CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ficz G, Hore TA, Santos F et al (2013) FGF signaling inhibition in ESCs drives rapid genome-wide demethylation to the epigenetic ground state of pluripotency. Cell Stem Cell 13:351–359CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Joshi O, Wang SY, Kuznetsova T et al (2015) Dynamic reorganization of extremely long-range promoter-promoter interactions between two states of pluripotency. Cell Stem Cell 17:748–757CrossRefPubMedGoogle Scholar
  26. 26.
    Cuddapah S, Barski A, Cui K et al (2009) Native chromatin preparation and Illumina/Solexa library construction. Cold Spring Harb Protoc 2009:5237CrossRefGoogle Scholar
  27. 27.
    Orlando DA, Chen MW, Brown VE, Solanki S, Choi YJ, Olson ER, Fritz CC, Bradner JE, Guenther MG (2014) Quantitative ChIP-Seq normalization reveals global modulation of the epigenome. Cell Rep 9:1163–1170CrossRefPubMedGoogle Scholar
  28. 28.
    Bonhoure N, Bounova G, Bernasconi D et al (2014) Quantifying ChIP-seq data: a spiking method providing an internal reference for sample-to-sample normalization. Genome Res 24:1157–1168CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Barski A, Cuddapah S, Cui K et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837CrossRefPubMedGoogle Scholar
  30. 30.
    Voigt P, Tee WW, Reinberg D (2013) A double take on bivalent promoters. Genes Dev 27:1318–1338CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kent WJ, Sugnet CW, Furey TS et al (2002) The human genome browser at UCSC. Genome Res 12:996–1006CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23:1289–1291CrossRefPubMedGoogle Scholar
  33. 33.
    Untergasser A, Cutcutache I, Koressaar T et al (2012) Primer3--new capabilities and interfaces. Nucleic Acids Res 40, e115CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Marks H, Kalkan T, Menafra R et al (2012) The transcriptional and epigenomic foundations of ground state pluripotency. Cell 149:590–604CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular Pharmacology, Howard Hughes Medical InstituteNew York University School of MedicineNew YorkUSA
  2. 2.Institute of Molecular and Cell Biology (IMCB)A*STAR (Agency for Science, Technology, and Research)SingaporeSingapore
  3. 3.Department of Physiology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore

Personalised recommendations