Polyallylamine Derivatives: Novel NonToxic Transfection Agents

  • Magdalena WytrwalEmail author
  • Chantal PichonEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1445)


Cationic polymers have shown great potential for the delivery of proteins, nucleic acids forming complexes, called polyplexes. The most important issue in the context of using cationic polymers as carriers is the balance between the high transfection efficiency and low cytotoxicity. In this chapter, we report the preparation of polyallylamine derivatives mainly based on substitution of amino groups by glycidyltrimethylammonium chloride. The resulting polyplexes enhance the transfection of HeLa cell line without cytotoxic effects. Here, we describe methods for preparation and characterization of polyplexes using dynamic light scattering, ζ-potential measurements, gel retardation assay, and atomic force microscopy. Moreover, we provide protocols for the transfection of HeLa cell line by polyplexes, determination of their cytotoxicity, cell uptake, and intracellular trafficking.

Key words

Polymer Plasmid Polyplexes Transfection Gene delivery Nanocondensation Carriers 



This work was supported by the National Science Centre (NCN) Poland (Grant No. 2012/05/N/ST5/00809).


  1. 1.
    Miguel MG, Pais AACC, Dias RS, Leal C, Rosa M, Lindman B (2003) DNA-cationic amphiphile interactions. Colloid Surface A 228(1-3):43–55CrossRefGoogle Scholar
  2. 2.
    Yang J, Liu HM, Zhang X (2014) Design, preparation and application of nucleic acid delivery carriers. Biotechnol Adv 32(4):804–817CrossRefPubMedGoogle Scholar
  3. 3.
    Kwoh DY, Coffin CC, Lollo CP, Jovenal J, Banaszczyk MG, Mullen P, Phillips A, Amini A, Fabrycki J, Bartholomew RM, Brostoff SW, Carlo DJ (1999) Stabilization of poly-L-lysine/DNA polyplexes for in vivo gene delivery to the liver. Biochim Biophys Acta 1444(2):171–190CrossRefPubMedGoogle Scholar
  4. 4.
    Agirre M, Zarate J, Ojeda E, Puras G, Desbrieres J, Pedraz JL (2014) Low molecular weight chitosan (LMWC)-based polyplexes for pDNA delivery: from bench to bedside. Polymers 6(6):1727–1755CrossRefGoogle Scholar
  5. 5.
    Singh D, Han SS, Shin EJ (2014) Polysaccharides as nanocarriers for therapeutic applications. J Biomed Nanotechnol 10(9):2149–2172CrossRefPubMedGoogle Scholar
  6. 6.
    Pourianazar NT, Mutlu P, Gunduz U (2014) Bioapplications of poly(amidoamine) (PAMAM) dendrimers in nanomedicine. J Nanopart Res 16 (4):2342 1-38.Google Scholar
  7. 7.
    Bishop CJ, Ketola TM, Tzeng SY, Sunshine JC, Urtti A, Lemmetyinen H, Vuorimaa-Laukkanen E, Yliperttula M, Green JJ (2013) The effect and role of carbon atoms in poly(beta-amino ester)s for DNA binding and gene delivery. J Am Chem Soc 135(18):6951–6957CrossRefPubMedGoogle Scholar
  8. 8.
    Godbey WT, Wu KK, Mikos AG (1999) Poly(ethylenimine) and its role in gene delivery. J Control Release 60(2-3):149–160CrossRefPubMedGoogle Scholar
  9. 9.
    Lungwitz U, Breunig M, Blunk T, Gopferich A (2005) Polyethylenimine-based non-viral gene delivery systems. Eur J Pharm Biopharm 60(2):247–266CrossRefPubMedGoogle Scholar
  10. 10.
    Wytrwal M, Leduc C, Sarna M, Goncalves C, Kepczynski M, Midoux P, Nowakowska M, Pichon C (2015) Gene delivery efficiency and intracellular trafficking of novel poly(allylamine) derivatives. Int J Pharm 478(1):372–382CrossRefPubMedGoogle Scholar
  11. 11.
    Tang MX, Szoka FC (1997) The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes. Gene Ther 4(8):823–832CrossRefPubMedGoogle Scholar
  12. 12.
    Khalil IA, Kogure K, Akita H, Harashima H (2006) Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol Rev 58(1):32–45CrossRefPubMedGoogle Scholar
  13. 13.
    Pathak A, Patnaik S, Gupta KC (2009) Recent trends in non-viral vector-mediated gene delivery. Biotechnol J 4(11):1559–1572CrossRefPubMedGoogle Scholar
  14. 14.
    Pichon C, Billiet L, Midoux P (2010) Chemical vectors for gene delivery: uptake and intracellular trafficking. Curr Opin Biotechnol 21(5):640–645CrossRefPubMedGoogle Scholar
  15. 15.
    Parhamifar L, Larsen AK, Hunter AC, Andresen TL, Moghimi SM (2010) Polycation cytotoxicity: a delicate matter for nucleic acid therapy-focus on polyethylenimine. Soft Matter 6(17):4001–4009CrossRefGoogle Scholar
  16. 16.
    De Smedt SC, Demeester J, Hennink WE (2000) Cationic polymer based gene delivery systems. Pharm Res 17(2):113–126CrossRefPubMedGoogle Scholar
  17. 17.
    Varkouhi AK, Scholte M, Storm G, Haisma HJ (2011) Endosomal escape pathways for delivery of biologicals. J Control Release 151(3):220–228CrossRefPubMedGoogle Scholar
  18. 18.
    Bertin A (2014) Polyelectrolyte complexes of DNA and polycations as gene delivery vectors. Adv Polym Sci 256:103–195CrossRefGoogle Scholar
  19. 19.
    Wytrwal M, Bednar J, Nowakowska M, Wydro P, Kepczynski M (2014) Interactions of serum with polyelectrolyte-stabilized liposomes: Cryo-TEM studies. Colloid Surface B 120:152–159CrossRefGoogle Scholar
  20. 20.
    de Ilarduya CT, Sun Y, Duezguenes N (2010) Gene delivery by lipoplexes and polyplexes. Eur J Pharm Sci 40(3):159–170CrossRefGoogle Scholar
  21. 21.
    Cho YW, Kim JD, Park K (2003) Polycation gene delivery systems: escape from endosomes to cytosol. J Pharm Pharmacol 55(6):721–734CrossRefPubMedGoogle Scholar
  22. 22.
    Pegg AE (2013) Toxicity of polyamines and their metabolic products. Chem Res Toxicol 26(12):1782–1800CrossRefPubMedGoogle Scholar
  23. 23.
    Novo L, Rizzo LY, Golombek SK, Dakwar GR, Lou B, Remaut K, Mastrobattista E, van Nostrum CF, Jahnen-Dechent W, Kiessling F, Braeckmans K, Lammers T, Hennink WE (2014) Decationized polyplexes as stable and safe carrier systems for improved biodistribution in systemic gene therapy. J Control Release 195:162–175CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Min SH, Park KC, Yeom YI (2014) Chitosan-mediated non-viral gene delivery with improved serum stability and reduced cytotoxicity. Biotechnol Bioproc E 19(6):1077–1082CrossRefGoogle Scholar
  25. 25.
    Wytrwal M, Koczurkiewicz P, Wojcik K, Michalik M, Kozik B, Zylewski M, Nowakowska M, Kepczynski M (2014) Synthesis of strong polycations with improved biological properties. J Biomed Mater Res A 102(3):721–731CrossRefPubMedGoogle Scholar
  26. 26.
    Bertrand E, Goncalves C, Billiet L, Gomez JP, Pichon C, Cheradame H, Midoux P, Guegan P (2011) Histidinylated linear PEI: a new efficient non-toxic polymer for gene transfer. Chem Commun 47(46):12547–12549CrossRefGoogle Scholar
  27. 27.
    Billiet L, Gomez JP, Berchel M, Jaffres PA, Le Gall T, Montier T, Bertrand E, Cheradame H, Guegan P, Mevel M, Pitard B, Benvegnu T, Lehn P, Pichon C, Midoux P (2012) Gene transfer by chemical vectors, and endocytosis routes of polyplexes, lipoplexes and lipopolyplexes in a myoblast cell line. Biomaterials 33(10):2980–2990CrossRefPubMedGoogle Scholar
  28. 28.
    Nuutila J, Lilius EM (2005) Flow cytometric quantitative determination of ingestion by phagocytes needs the distinguishing of overlapping populations of binding and ingesting cells. Cytometry A 65A(2):93–102CrossRefGoogle Scholar
  29. 29.
    Monsigny M, Roche AC, Midoux P (1984) Uptake of Neoglycoproteins Via Membrane Lectin(S) of L1210 Cells Evidenced by Quantitative Flow Cytofluorometry and Drug Targeting. Biol Cell 51(2):187–196CrossRefPubMedGoogle Scholar
  30. 30.
    Midoux P, Roche AC, Monsigny M (1987) Quantitation of the binding, uptake, and degradation of fluoresceinylated neoglycoproteins by flow-cytometry. Cytometry 8(3):327–334CrossRefPubMedGoogle Scholar
  31. 31.
    Goncalves C, Mennesson E, Fuchs R, Gorvel JP, Midoux P, Pichon C (2004) Macropinocytosis of polyplexes and recycling of plasmid from clathrin-dependent pathway impair the transfection efficiency into human hepatocarcinoma cells. Mol Ther 10:373–385CrossRefPubMedGoogle Scholar
  32. 32.
    Steinman RM, Mellman IS, Muller WA, Cohn ZA (1983) Endocytosis and the recycling of plasma-membrane. J Cell Biol 96(1):1–27CrossRefPubMedGoogle Scholar
  33. 33.
    Erbacher P, Roche AC, Monsigny M, Midoux P (1996) Putative role of chloroquine in gene transfer into a human hepatoma cell line by DNA lactosylated polylysine complexes. Exp Cell Res 225(1):186–194CrossRefPubMedGoogle Scholar
  34. 34.
    de Bruin K, Ruthardt N, von Gersdorff K, Bausinger R, Wagner E, Ogris M, Brauchle C (2007) Cellular dynamics of EGF receptor-targeted synthetic viruses. Mol Ther 15(7):1297–1305CrossRefPubMedGoogle Scholar
  35. 35.
    Breuzard G, Tertil M, Goncalves C, Cheradame H, Geguan P, Pichon C, Midoux P (2008) Nuclear delivery of N kappa B-assisted DNA/polymer complexes: plasmid DNA quantitation by confocal laser scanning microscopy and evidence of nuclear polyplexes by FRET imaging. Nucleic Acids Res 36(12), e17CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Academic Centre for Materials and NanotechnologyAGH University of Science and TechnologyKrakowPoland
  2. 2.Department of Physical Chemistry and Electrochemistry, Faculty of ChemistryJagiellonian UniversityKrakówPoland
  3. 3.Centre de Biophysique MoléculaireUPR4301 CNRS affiliated to the University of OrléansOrléans Cedex 2France

Personalised recommendations