Skip to main content
Log in

Chitosan-mediated non-viral gene delivery with improved serum stability and reduced cytotoxicity

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Polyethyleneimine (PEI) has been widely used in gene delivery systems because of its outstanding ability to promote DNA condensation and endosome escape. However, its use for the introduction of foreign DNA into host cells is compromised by high cytotoxicity and serum reactivity. In this study we examined the possibility of improving the PEI-mediated gene delivery using the serum-stable and biodegradable polymer, chitosan. Among chitosans of different molecular weights, the 45 kD form exhibited significantly higher gene delivery efficiency than the 15 and 100 kD forms. Using the 45 kDa form of chitosan, we formulated composite PEI/DNA/chitosan (PDC) complexes consisting of the core part where DNA chains were tightly condensed by PEI and the outer layer lined with chitosan, and found that an optimal PDC complex exhibits a significantly higher transfection efficiency in a high serum condition and a lower toxicity than monolithic PEI/DNA (PD) complex. Moreover, addition of chitosan to PEI/DNA complex reduced nonspecific interactions with erythrocytes, which may eventually contribute to improved transfection efficiency in high serum concentrations. These results demonstrate that chitosan coating of PD complex might increase the efficiency of PEI-mediated gene delivery in vivo as well as in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gratton, J. P., J. Yu, J. W. Griffith, R. W. Babbitt, R. S. Scotland, and R. Hickey (2003) Cell-permeable peptides improve cellular uptake and therapeutic gene delivery of replication-deficient viruses in cells and in vivo. Nat. Med. 9: 357–362.

    Article  CAS  Google Scholar 

  2. Kuhnel, F., B. Schulte, T. Wirth, N. Woller, S. Schafers, and L. Zender (2004) Protein transduction domains fused to virus receptors improve cellular virus uptake and enhance oncolysis by tumor-specific replicating vectors. J. Virol. 78: 13743–13754.

    Article  Google Scholar 

  3. Young, L. S., P. F. Searle, D. Onion, and V. Mautner (2006) Viral gene therapy strategies: From basic science to clinical application. J. Pathol. 208: 299–318.

    Article  CAS  Google Scholar 

  4. Boulaiz, H., J. A. Marchal, J. Prados, C. Melguizo, and A. Aranega (2005) Non-viral and viral vectors for gene therapy. Cell Mol. Biol. (Noisy-le-grand) 51: 3–22.

    CAS  Google Scholar 

  5. van der Aa, M. A., E. Mastrobattista, R. S. Oosting, W. E. Hennink, G. A. Koning, and D. J. Crommelin (2006) The nuclear pore complex: The gateway to successful nonviral gene delivery. Pharm. Res. 23: 447–459.

    Article  Google Scholar 

  6. Ogris, M., R. C. Carlisle, T. Bettinger, and L. W. Seymour (2001) Melittin enables efficient vesicular escape and enhanced nuclear access of nonviral gene delivery vectors. J. Biol. Chem. 276: 47550–47555.

    Article  CAS  Google Scholar 

  7. Morris, M. C., L. Chaloin, F. Heitz, and G. Divita (2000) Translocating peptides and proteins and their use for gene delivery. Curr. Opin. Biotechnol. 11: 461–466.

    Article  CAS  Google Scholar 

  8. Han, J., M. Lim, and Y. I. Yeom (1999) Receptor-mediated gene transfer to cells of hepatic origin by galactosylated albuminpolylysine complexes. Biol. Pharm. Bull. 22: 836–840.

    Article  CAS  Google Scholar 

  9. Sambrook J. F. E. and T. Maniatis (1989) Molecular Cloning. New York: Cold Spring Harbor Lab. Press.

    Google Scholar 

  10. Ossevoort, M. A., M. C. Feltkamp, K. J. van Veen, C. J. Melief, and W. M. Kast (1995) Dendritic cells as carriers for a cytotoxic T-lymphocyte epitope-based peptide vaccine in protection against a human papillomavirus type 16-induced tumor. J. Immunother. Emphasis Tumor Immunol. 18: 86–94.

    Article  CAS  Google Scholar 

  11. Okano, T. and T. Matsuda (1997) Hybrid muscular tissues: Preparation of skeletal muscle cell-incorporated collagen gels. Cell Transplant. 6: 109–118.

    Article  CAS  Google Scholar 

  12. Godbey, W. T., K. K. Wu, and A. G. Mikos (1999) Tracking the intracellular path of poly(ethylenimine)/DNA complexes for gene delivery. Proc. Natl. Acad. Sci. U. S. A. 96: 5177–5181.

    Article  CAS  Google Scholar 

  13. Tripathi, S. K., R. Goyal, P. Kumar, and K. C. Gupta (2012) Linear polyethylenimine-graft-chitosan copolymers as efficient DNA/siRNA delivery vectors in vitro and in vivo. Nanomed. 8: 337–345.

    Article  CAS  Google Scholar 

  14. Hejazi, R. and M. Amiji (2003) Chitosan-based gastrointestinal delivery systems. J. Control Rel. 89: 151–165.

    Article  CAS  Google Scholar 

  15. Li, Z. and M. Zhang (2005) Chitosan-alginate as scaffolding material for cartilage tissue engineering. J. Biomed. Mater Res. A 75: 485–493.

    Article  Google Scholar 

  16. Mao, S., W. Sun, and T. Kissel (2010) Chitosan-based formulations for delivery of DNA and siRNA. Adv. Drug Deliv. Rev. 62: 12–27.

    Article  CAS  Google Scholar 

  17. Kim, T. H., S. I. Kim, T. Akaike, and C. S. Cho (2005) Synergistic effect of poly(ethylenimine) on the transfection efficiency of galactosylated chitosan/DNA complexes. J. Control Rel. 105: 354–366.

    Article  CAS  Google Scholar 

  18. Jiang, H. L., Y. K. Kim, R. Arote, J. W. Nah, M. H. Cho, Y. J. Choi, T. Akaike, and C. S. Cho (2007) Chitosan-graft-polyethylenimine as a gene carrier. J. Control. Rel. 117: 273–280.

    Article  CAS  Google Scholar 

  19. Zhao, Q. Q., J. L. Chen, M. Han, W. Q. Liang, Y. Tabata, and J. Q. Gaa (2008) Combination of poly(ethylenimine) and chitosan induces high gene transfection efficiency and low cytotoxicity. J. Biosci. Bioeng. 105: 65–68.

    Article  CAS  Google Scholar 

  20. Lim, M. J., S. H. Min, J. J. Lee, I. C. Kim, J. T. Kim, D. C. Lee, N. S. Kim, S. Jeong, M. N. Kim, K. D. Kim, J. S. Lim, S. B. Han, H. M. Kim, D. S. Heo, and Y. I. Yeom (2006) Targeted therapy of DNA tumor virus-associated cancers using virus-activated transcription factors. Mol. Ther. 13: 899–909.

    Article  CAS  Google Scholar 

  21. Min, S. H., D. C. Lee, M. J. Lim, H. S. Park, D. M. Kim, C. W. Cho, Y. Yoon do, and Y. I. Yeom (2006) A composite gene delivery system consisting of polyethylenimine and an amphipathic peptide KALA. J. Gene Med. 8: 1425–1434.

    Article  CAS  Google Scholar 

  22. Min, S. H., D. M. Kim, M. N. Kim, J. Ge, D. C. Lee, I. Y. Park, K. C. Park, J. S. Hwang, C. W. Cho, and Y. I. Yeom (2010) Gene delivery using a derivative of the protein transduction domain peptide, K-Antp. Biomat. 7: 1858–1864.

    Article  Google Scholar 

  23. Kaya, M., V. S. Cakmak, T. Baran, M. Asan-Ozusaglam, A. Mentes, and K. O. Tozak (2014) New chitin, chitosan, and O-carboxymethyl chitosan sources from resting eggs of Daphnia longispina (Crustacea); with physicochemical characterization, and antimicrobial and antioxidant activities. Biotechnol. Bioproc. Eng. 19: 58–69.

    Article  CAS  Google Scholar 

  24. Kim, J. M., E. Shin, S. M. Ryou, J. H. Yeom, and K. Lee (2013) Gene delivery platforms. Biotechnol. Bioproc. Eng. 18: 637–647.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Il Yeom.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, SH., Park, K.C. & Yeom, Y.I. Chitosan-mediated non-viral gene delivery with improved serum stability and reduced cytotoxicity. Biotechnol Bioproc E 19, 1077–1082 (2014). https://doi.org/10.1007/s12257-014-0450-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-014-0450-5

Keywords

Navigation