Skip to main content

Single-Cell RT-PCR, a Technique to Decipher the Electrical, Anatomical, and Genetic Determinants of Neuronal Diversity

  • Protocol
  • First Online:
Patch-Clamp Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1183))

Abstract

The patch-clamp technique has allowed for detailed studies on the electrical properties of neurons. Dye loading through patch pipettes enabled characterizing the morphological properties of the neurons. In addition, the patch-clamp technique also allows for harvesting mRNA from single cells to study gene expression at the single cell level (known as single-cell RT-PCR). The combination of these three approaches makes possible the study of the GEM profile of neurons (gene expression, electrophysiology, and morphology) using a single patch pipette and patch-clamp recording. This combination provides a powerful technique to investigate and correlate the neuron’s gene expression with its phenotype (electrical behavior and morphology). The harvesting and amplification of single cell mRNA for gene expression studies is a challenging task, especially for researchers with sparse or no training in molecular biology (see Notes 1,2 and 5). Here we describe in detail the GEM profiling approach with special attention to the gene expression profiling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eberwine J, Yeh H, Miyarisho KCY (1992) Analysis of gene expression in single live neurons. Proc Natl Acad Sci U S A 89:3010–3014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Lambolez B, Audinat E, Bochet P et al (1992) AMPA receptor subunits expressed by single Purkinje cells. Neuron 9:247–258

    Article  CAS  PubMed  Google Scholar 

  3. Sucher NJ, Deitcher DL (1995) PCR and patch-clamp analysis of single neurons. Neuron 14:1095–1100

    Article  CAS  PubMed  Google Scholar 

  4. Ceranik K, Bender R, Geiger JR et al (1997) A novel type of GABAergic interneuron connecting the input and the output regions of the hippocampus. J Neurosci 17:5380–5394

    CAS  PubMed  Google Scholar 

  5. Toledo-Rodriguez M, Goodman P, Illic M et al (2005) Neuropeptide and calcium binding protein gene expression profiles predict neuronal anatomical type in the juvenile rat. J Physiol 567:401–413

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Toledo-Rodriguez M, Blumenfeld B, Wu C et al (2004) Correlation maps allow neuronal electrical properties to be predicted from single-cell gene expression profiles in rat neocortex. Cereb Cortex 14:1310–1327

    Article  PubMed  Google Scholar 

  7. Wang Y, Gupta A, Toledo-Rodriguez M et al (2002) Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. Cereb Cortex 12:395–410

    Article  PubMed  Google Scholar 

  8. Dodt HU, Zieglgansberger W (1990) Visualizing unstained neurons in living brain slices by infrared DIC-videomicroscopy. Brain Res 537:333–336

    Article  CAS  PubMed  Google Scholar 

  9. Sargent TD (1987) Isolation of differentially expressed genes. Methods Enzymol 157:423–432

    Article  Google Scholar 

  10. Foehring RC, Mermelstein PG, Song WJ et al (2000) Unique properties of R-type calcium currents in neocortical and neostriatal neurons. J Neurophysiol 84:2225–2236

    CAS  PubMed  Google Scholar 

  11. Ruano D, Lambolez B, Rossier J et al (1995) Kainate receptor subunits expressed in single cultured hippocampal neurons: molecular and functional variants by RNA editing. Neuron 14:1009–1017

    Article  CAS  PubMed  Google Scholar 

  12. Edwards MC, Gibbs RA (1994) Multiplex PCR: advantages, development, and applications. PCR Methods Appl 3:S65–S75

    Article  CAS  PubMed  Google Scholar 

  13. Plant TD, Schirra C, Katz E et al (1998) Single-cell RT-PCR and functional characterization of Ca2+ channels in motoneurons of the rat facial nucleus. J Neurosci 18:9573–9584

    CAS  PubMed  Google Scholar 

  14. Saeed AI, Sharov V, White J et al (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34:374–378

    CAS  PubMed  Google Scholar 

  15. Cauli B, Porter JT, Tsuzuki K et al (2000) Classification of fusiform neocortical interneurons based on unsupervised clustering. Proc Natl Acad Sci U S A 97:6144–6149

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Cauli B, Audinat E, Lambolez B et al (1997) Molecular and physiological diversity of cortical nonpyramidal cells. J Neurosci 17:3894–3906

    CAS  PubMed  Google Scholar 

  17. Aranda-Abreu G, Behar L, Chung S et al (1999) Embryonic lethal abnormal vision-like RNA-binding proteins regulate neurite outgrowth and tau expression in PC12 cells. J Neurosci 19:6907–6917

    CAS  PubMed  Google Scholar 

  18. Glasgow E, Kusano K, Chin H et al (1999) Single cell reverse transcription-polymerase chain reaction analysis of rat supraoptic magnocellular neurons: neuropeptide phenotypes and high voltage-gated calcium channel subtypes. Endocrinology 140:5391–5401

    Article  CAS  PubMed  Google Scholar 

  19. Song WJ, Tkatch T, Baranauskas G et al (1998) Somatodendritic depolarization-activated potassium currents in rat neostriatal cholinergic interneurons are predominantly of the A type and attributable to coexpression of Kv4.2 and Kv4.1 subunits. J Neurosci 18:3124–3137

    CAS  PubMed  Google Scholar 

  20. Baranauskas G, Tkatch T, Surmeier DJ (1999) Delayed rectifier currents in rat globus pallidus neurons are attributable to Kv2.1 and Kv3.1/3.2 K(+) channels. J Neurosci 19:6394–6404

    CAS  PubMed  Google Scholar 

  21. Surmeier DJ, Song WJ, Yan Z (1996) Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. J Neurosci 16:6579–6591

    CAS  PubMed  Google Scholar 

  22. Yan Z, Surmeier DJ (1996) Muscarinic (m2/m4) receptors reduce N- and P-type Ca2+ currents in rat neostriatal cholinergic interneurons through a fast, membrane-delimited, G-protein pathway. J Neurosci 16:2592–2604

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the late Prof. Phil Goodman for helpful insights on the statistical approaches to the single-cell RT-PCR data analysis. We would like to thank Shaoling Ma, Claudia Herzberg, Raya Eilam, and Tal Hetzroni for their technical assistance and Dr Jesper Ryger for his useful comments. This work was supported by the National Alliance for Autism Research and a European Union grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Toledo-Rodriguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Toledo-Rodriguez, M., Markram, H. (2014). Single-Cell RT-PCR, a Technique to Decipher the Electrical, Anatomical, and Genetic Determinants of Neuronal Diversity. In: Martina, M., Taverna, S. (eds) Patch-Clamp Methods and Protocols. Methods in Molecular Biology, vol 1183. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1096-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1096-0_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1095-3

  • Online ISBN: 978-1-4939-1096-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics