Novel Bioreactor Platform for Scalable Cardiomyogenic Differentiation from Pluripotent Stem Cell-Derived Embryoid Bodies

  • Sasitorn Rungarunlert
  • Joao N. Ferreira
  • Andras Dinnyes
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1502)

Abstract

Generation of cardiomyocytes from pluripotent stem cells (PSCs) is a common and valuable approach to produce large amount of cells for various applications, including assays and models for drug development, cell-based therapies, and tissue engineering. All these applications would benefit from a reliable bioreactor-based methodology to consistently generate homogenous PSC-derived embryoid bodies (EBs) at a large scale, which can further undergo cardiomyogenic differentiation. The goal of this chapter is to describe a scalable method to consistently generate large amount of homogeneous and synchronized EBs from PSCs. This method utilizes a slow-turning lateral vessel bioreactor to direct the EB formation and their subsequent cardiomyogenic lineage differentiation.

Keywords:

Bioreactor Cardiomyocyte Embryoid body Pluripotent stem cells Slow turning lateral vessel 

References

  1. 1.
    Chong JJ, Yang X, Don CW, Minami E, Liu YW, Weyers JJ, Mahoney WM, Van Biber B, Cook SM, Palpant NJ, Gantz JA, Fugate JA, Muskheli V, Gough GM, Vogel KW, Astley CA, Hotchkiss CE, Baldessari A, Pabon L, Reinecke H, Gill EA, Nelson V, Kiem HP, Laflamme MA, Murry CE (2014) Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510(7504):273–277. doi:10.1038/nature13233 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Masumoto H, Ikuno T, Takeda M, Fukushima H, Marui A, Katayama S, Shimizu T, Ikeda T, Okano T, Sakata R, Yamashita JK (2014) Human iPS cell-engineered cardiac tissue sheets with cardiomyocytes and vascular cells for cardiac regeneration. Sci Rep 4:6716. doi:10.1038/srep06716 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kempf H, Kropp C, Olmer R, Martin U, Zweigerdt R (2015) Cardiac differentiation of human pluripotent stem cells in scalable suspension culture. Nat Protoc 10(9):1345–1361. doi:10.1038/nprot.2015.089 CrossRefPubMedGoogle Scholar
  4. 4.
    Höpfl G, Gassmann M, Desbaillets I (2004) Differentiating embryonic stem cells into embryoid bodies. Methods Mol Biol 254:79–98. doi:10.1385/1-59259-741-6:079 PubMedGoogle Scholar
  5. 5.
    Chen M, Lin YQ, Xie SL, Wu HF, Wang JF (2011) Enrichment of cardiac differentiation of mouse embryonic stem cells by optimizing the hanging drop method. Biotechnol Lett 33(4):853–858. doi:10.1007/s10529-010-0494-3 CrossRefPubMedGoogle Scholar
  6. 6.
    Rungarunlert S, Techakumphu M, Pirity MK, Dinnyes A (2009) Embryoid body formation from embryonic and induced pluripotent stem cells: Benefits of bioreactors. World J Stem Cells 1(1):11–21. doi:10.4252/wjsc.v1.i1.11 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Barzegari A, Saei AA (2012) An update to space biomedical research: tissue engineering in microgravity bioreactors. Bioimpacts 2(1):23–32. doi:10.5681/bi.2012.003 PubMedPubMedCentralGoogle Scholar
  8. 8.
    Pettinato G, Wen X, Zhang N (2015) Engineering strategies for the formation of embryoid bodies from human pluripotent stem cells. Stem Cells Dev 24(14):1595–1609. doi:10.1089/scd.2014.0427 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Rungarunlert S, Klincumhom N, Bock I, Nemes C, Techakumphu M, Pirity MK, Dinnyes A (2011) Enhanced cardiac differentiation of mouse embryonic stem cells by use of the slow-turning, lateral vessel (STLV) bioreactor. Biotechnol Lett 33(8):1565–1573. doi:10.1007/s10529-011-0614-8 CrossRefPubMedGoogle Scholar
  10. 10.
    Rungarunlert S, Klincumhom N, Tharasanit T, Techakumphu M, Pirity MK, Dinnyes A (2013) Slow turning lateral vessel bioreactor improves embryoid body formation and cardiogenic differentiation of mouse embryonic stem cells. Cell Reprogram 15(5):443–458. doi:10.1089/cell.2012.0082 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lü S, Liu S, He W, Duan C, Li Y, Liu Z, Zhang Y, Hao T, Wang Y, Li D, Wang C, Gao S (2008) Bioreactor cultivation enhances NTEB formation and differentiation of NTES cells into cardiomyocytes. Cloning Stem Cells 10(3):363–370. doi:10.1089/clo.2007.0093 CrossRefPubMedGoogle Scholar
  12. 12.
    Yirme G, Amit M, Laevsky I, Osenberg S, Itskovitz-Eldor J (2008) Establishing a dynamic process for the formation, propagation, and differentiation of human embryoid bodies. Stem Cells Dev 17(6):1227–1241. doi:10.1089/scd.2007.0272 CrossRefPubMedGoogle Scholar
  13. 13.
    Muenthaisong S, Ujhelly O, Polgar Z, Varga E, Ivics Z, Pirity MK, Dinnyes A (2012) Generation of mouse induced pluripotent stem cells from different genetic backgrounds using Sleeping beauty transposon mediated gene transfer. Exp Cell Res 318(19):2482–2489. doi:10.1016/j.yexcr.2012.07.014 CrossRefPubMedGoogle Scholar
  14. 14.
    Mauritz C, Schwanke K, Reppel M, Neef S, Katsirntaki K, Maier LS, Nguemo F, Menke S, Haustein M, Hescheler J, Hasenfuss G, Martin U (2008) Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation 118(5):507–517. doi:10.1161/CIRCULATIONAHA.108.778795 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Sasitorn Rungarunlert
    • 1
  • Joao N. Ferreira
    • 2
  • Andras Dinnyes
    • 3
    • 4
  1. 1.Department of Preclinical and Applied Animal Science, Faculty of Veterinary ScienceMahidol UniversityNakhon PathomThailand
  2. 2.Department of Oral and Maxillofacial Surgery, Faculty of DentistryNational University of SingaporeSingaporeSingapore
  3. 3.BioTalentum Ltd.GödöllöHungary
  4. 4.Molecular Animal Biotechnology LaboratorySzent Istvan UniversityGödöllöHungary

Personalised recommendations