Skip to main content

Setting Up All-Atom Molecular Dynamics Simulations to Study the Interactions of Peripheral Membrane Proteins with Model Lipid Bilayers

  • Protocol
  • First Online:
Intracellular Lipid Transport

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1949))

Abstract

All-atom molecular dynamics (MD) simulations enable the study of biological systems at atomic detail, complement the understanding gained from experiment, and can also motivate experimental techniques to further examine a given biological process. This method is based on statistical mechanics; it predicts the trajectory of atoms over time by solving Newton’s Laws of motion taking into account all forces. Here, we describe the use of this methodology to study the interaction between peripheral membrane proteins and a lipid bilayer. Specifically, we provide step-by-step instructions to set up MD simulations to study the binding and interaction of the amphipathic helix of Osh4, a lipid transport protein, and Thanatin, an antimicrobial peptide (AMP), with model lipid bilayers using both fully detailed lipid tails and the highly mobile membrane-mimetic (HMMM) method to enhance conformational sampling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leach AR (ed) (2001) Molecular modeling principles and applications, 2nd edn. Great Britain, Pearson Education

    Google Scholar 

  2. Stryer L (ed) (1989) Molecular design of life. W.H. Freeman and Company, New York, USA

    Google Scholar 

  3. Kalli AC, Sansom MSP (2014) Interactions of peripheral proteins with model membranes as viewed by molecular dynamics simulations. Biochem Soc Trans 42:1418–1424

    Article  CAS  Google Scholar 

  4. Monje-Galvan V, Klauda JB (2016) Peripheral membrane proteins: Tying the knot between experiment and computation. Biochim Biophys Acta 1858:1584–1593

    Article  CAS  Google Scholar 

  5. Mori T, Miyashita N, Im W et al (2016) Molecular dynamics simulations of biological membranes and membrane proteins using enhanced conformational sampling algorithms. Biochim Biophys Acta 1858:1635–1651

    Article  CAS  Google Scholar 

  6. Barducci A, Bonomi M, Parrinello M (2016) Metadynamics. Wiley Interdiscip Rev Comput Mol Sci 1:826–843

    Article  Google Scholar 

  7. Doucet CM, Esmery N, de Saint-Jean M et al (2015) Membrane curvature sensing by amphipathic helices is modulated by the surrounding protein backbone. PLoS One 10:e0137965

    Article  Google Scholar 

  8. Cui H, Mim C, Vazquez FX et al (2013) Understanding the role of amphipathic helices in N-BAR domain driven membrane remodeling. Biophys J 104:404–411

    Article  CAS  Google Scholar 

  9. Sinha S, Zheng L, Mu Y et al (2017) Structure and interactions of a host defense antimicrobial peptide thanatin in lipopolysaccharide micelles reveal mechanism of bacterial cell agglutination. Nat Sci Rep 7:17795

    Article  Google Scholar 

  10. Drin G, Casella J-F, Gautier R et al (2007) A general amphipathic alpha-helical motif for sensing membrane curvature. Nat Struct Mol Biol 14:138–146

    Article  CAS  Google Scholar 

  11. Monje-Galvan V, Klauda JB (2018) Preferred binding mechanism of Osh4's amphipathic lipid-packing sensor motif, insights from molecular dynamics. J Phys Chem B 122:9713–9723

    Article  CAS  Google Scholar 

  12. Ohkubo YZ, Pogorelov TV, Arcario MJ et al (2012) Accelerating membrane insertion of peripheral proteins with a novel membrane mimetic model. Biophys J 102:2130–2139

    Article  CAS  Google Scholar 

  13. Mandard N, Sodano P, Labbe H et al (1998) Solution structure of thanatin, a potent bactericidal and fungicidal insect peptide, determined from protein two-dimensional nuclear magnetic resonance data. Eur J Biochem 256:404–410

    Article  CAS  Google Scholar 

  14. Jo S, Kim T, Iyer VG et al (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29:1859–1865

    Article  CAS  Google Scholar 

  15. Lee J, Cheng X, Swails JM et al (2016) CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J Chem Theory Comput 12:405–413

    Article  CAS  Google Scholar 

  16. Qi YF, Cheng X, Lee J et al (2015) CHARMM-GUI HMMM builder for membrane simulations with the highly mobile membrane-mimetic model. Biophys J 109:2012–2022

    Article  CAS  Google Scholar 

  17. Wu EL, Cheng X, Jo S et al (2014) CHARMM-GUI membrane builder toward realistic biological membrane simulations. J Comput Chem 35:1997–2004

    Article  CAS  Google Scholar 

  18. Klauda JB, Venable RM, Freites JA et al (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114:7830–7843

    Article  CAS  Google Scholar 

  19. Lim JB, Rogaski B, Klauda JB (2012) Update of the cholesterol force field parameters in CHARMM. J Phys Chem B 116:203–210

    Article  CAS  Google Scholar 

  20. Venable RM, Sodt AJ, Rogaski B et al (2014) CHARMM all-atom additive force field for sphingomyelin: elucidation of hydrogen bonding and of positive curvature. Biophys J 107:134–145

    Article  CAS  Google Scholar 

  21. Li Z, Venable RM, Rogers LA et al (2009) Molecular dynamics simulations of PIP2 and PIP3 in lipid bilayers: determination of ring orientation, and the effects of surface roughness on a Poisson-Boltzmann description. Biophys J 97:155–163

    Article  CAS  Google Scholar 

  22. Huang J, Rauscher S, Nawrocki G et al (2016) CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods 14:71–73

    Article  Google Scholar 

  23. Reif MM, Winger M, Oostenbrink C (2013) Testing of the GROMOS force-field parameter set 54A8: structural properties of electrolyte solutions, lipid bilayers, and proteins. J Chem Theory Comput 9:1247–1264

    Article  CAS  Google Scholar 

  24. Harder E, Damm W, Maple J et al (2016) OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. J Chem Theory Comput 12:281–296

    Article  CAS  Google Scholar 

  25. Dickson CJ, Madej BD, Skjevik ÅA et al (2014) Lipid14: the amber lipid force field. J Chem Theory Comput 10:865–879

    Article  CAS  Google Scholar 

  26. Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  27. Brooks BR, Brooks CL, Mackerell JAD et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614

    Article  CAS  Google Scholar 

  28. Phillips JC, Braun R, Wang W et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  Google Scholar 

  29. Pronk S, Pall S, Schulz R et al (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29:845–854

    Article  CAS  Google Scholar 

  30. Case DA, Betz RM, Botello-Smith W et al (2016) AMBER16. University of California, San Francisco

    Google Scholar 

  31. Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  32. Pettersen EF, Goddard TD, Huang CC et al (2004) Chimera - a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  Google Scholar 

  33. Martinez L, Andrade R, Birgin EG et al (2009) PACKMOL: a package for building initial configurations for molecular dynamics simulations. J Comput Chem 30:2157–2164

    Article  CAS  Google Scholar 

  34. Jo S, Lim JB, Klauda JB et al (2009) CHARMM-GUI Membrane Builder for mixed bilayers and its application to yeast membranes. Biophys J 97:50–58

    Article  CAS  Google Scholar 

  35. Monje-Galvan V, Klauda JB (2015) Modelling yeast organelle membranes and how lipid diversity influences bilayer properties. Biochemistry 54:6852–6861

    Article  CAS  Google Scholar 

  36. Boughter CT, Monje-Galvan V, Im W et al (2016) Influence of cholesterol on phospholipid bilayer structure and dynamics. J Phys Chem B 120:11761–11772

    Article  CAS  Google Scholar 

  37. Khakbaz P, Monje-Galvan V, Zhuang X et al (2017) Modeling lipid membranes. In: Geiger O (ed) Biogenesis of fatty acids, lipids and membranes. Springer International Publishing, Cham, pp 1–19

    Google Scholar 

  38. Marquardt D, Geier B, Pabst G (2015) Asymmetric lipid membranes: towards more realistic model systems. Membranes 5:180–196

    Article  CAS  Google Scholar 

  39. Ingólfsson HI, Melo MN, van Eerden FJ et al (2014) Lipid organization of the plasma membrane. J Am Chem Soc 136:14554–14559

    Article  Google Scholar 

  40. Wildermuth KD, Monje-Galvan V, Warburton LM et al (2018) Effect of membrane lipid packing on stable binding of the ALPS peptide. J Chem Theory Comput. Accepted

    Google Scholar 

  41. Ryckaert J-P, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  42. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697

    Article  CAS  Google Scholar 

  43. Frenkel D, Smit B (2001) Understanding molecular simulation from algorithms to applications, 2nd edn. Academic Press, Cambridge

    Google Scholar 

  44. Feller SE, Zhang Y, Pastor RW et al (1995) Constant pressure molecular dynamics simulation: the Langevin piston method. J Chem Phys 103:4613–4621

    Article  CAS  Google Scholar 

  45. Martyna GJ, Tobias DJ, Klein ML (1994) Constant pressure molecular dynamics algorithms. J Chem Phys 101:4177–4189

    Article  CAS  Google Scholar 

  46. Steinbach PJ, Brooks BR (1994) New spherical-cutoff methods for long-range forces in macromolecular simulation. J Comput Chem 15:667–683

    Article  CAS  Google Scholar 

  47. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  48. Jo S, Kim T, Im W (2007) Automated builder and database of protein/membrane complexes for molecular dynamics simulations. PLoS One 2:e880

    Article  Google Scholar 

  49. Barber CB, Dobkin DP, Huhdanpaa H (1996) The quickhull algorithm for convex hulls. ACM Trans Math Softw 22:469–483

    Article  Google Scholar 

  50. Allen WJ, Lemkul JA, Bevan DR (2009) GridMAT-MD: a grid-based membrane analysis tool for use with molecular dynamics. J Comput Chem 30:1952–1958

    Article  CAS  Google Scholar 

  51. Shaw DE, Deneroff MM, Dror RO et al (2008) Anton, a special-purpose machine for molecular dynamics simulation. Commun ACM 51:91–97

    Article  Google Scholar 

  52. Castro-Román F, Benz RW, White SH et al (2006) Investigation of finite system-size effects in molecular dynamics simulations of lipid bilayers. J Phys Chem B 110:24157–24161

    Article  Google Scholar 

  53. Vanni S, Hirose H, Barelli H et al (2014) A sub-nanometre view of how membrane curvature and composition modulate lipid packing and protein recruitment. Nat Commun 5:4916

    Article  CAS  Google Scholar 

  54. Robert E, Lefèvre T, Fillion M et al (2015) Mimicking and understanding the agglutination effect ofthe antimicrobial peptide thanatin using model phospholipid vesicles. Biochemistry 54:3932–3941

    Article  CAS  Google Scholar 

  55. Ikeguchi M (2004) Partial rigid-body dynamics in NPT, NPAT, and NPγT ensembles for proteins and membranes. J Comput Chem 25:529–541

    Article  CAS  Google Scholar 

  56. Vanni S, Vamparys L, Gautier R et al (2013) Amphipathic lipid packing sensor motifs: probing bilayer defects with hydrophobic residues. Biophys J 104:575–584

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The AAMD and HMMM method discussed here were used to study the binding mechanism of ALPS to model membranes, results are presented in [11, 40], respectively; the Thanatin system is currently under study. These simulation trajectories were partially supported by NSF grant DBI-1145652 and MCB-1149187 and the High Performance Deepthought & Deepthought 2 Computing Clusters at the University of Maryland, College Park administered by the Division of Information Technology. The AAMD runs were possible thanks to time on the Anton Computer provided by the Pittsburgh Supercomputing Center (PSC) through Grant R01GM116961 from the National Institutes of Health and our specific time associated with the grant PSCA14030P. The Anton machine at PSC was generously made available by D.E. Shaw Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viviana Monje-Galvan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Monje-Galvan, V., Warburton, L., Klauda, J.B. (2019). Setting Up All-Atom Molecular Dynamics Simulations to Study the Interactions of Peripheral Membrane Proteins with Model Lipid Bilayers. In: Drin, G. (eds) Intracellular Lipid Transport. Methods in Molecular Biology, vol 1949. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9136-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9136-5_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9135-8

  • Online ISBN: 978-1-4939-9136-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics