Skip to main content

Optical Regulation of Class C GPCRs by Photoswitchable Orthogonal Remotely Tethered Ligands

  • Protocol
  • First Online:
G Protein-Coupled Receptor Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1947))

Abstract

G protein-coupled receptors (GPCRs) respond to a wide range of extracellular cues to initiate complex downstream signaling cascades that control myriad aspects of cell function. Despite a long-standing appreciation of their importance to both basic physiology and disease treatment, it remains a major challenge to understand the dynamic activation patterns of GPCRs and the mechanisms by which they modulate biological processes at the molecular, cellular, and tissue levels. Unfortunately, classical methods of pharmacology and genetic knockout are often unable to provide the requisite precision needed to probe such questions. This is an especially pressing challenge for the class C GPCR family which includes receptors for the major excitatory and inhibitory neurotransmitters, glutamate and GABA, which signal in a rapid, spatially-delimited manner and contain many different subtypes whose roles are difficult to disentangle. The desire to manipulate class C GPCRs with spatiotemporal precision, genetic targeting, and subtype specificity has led to the development of a variety of photopharmacological tools. Of particular promise are the photoswitchable orthogonal remotely tethered ligands (“PORTLs”) which attach to self-labeling tags that are genetically encoded into full length, wild-type metabotropic glutamate receptors (mGluRs) and allow the receptor to be liganded and un-liganded in response to different wavelengths of illumination. While powerful for studying class C GPCRs, a number of detailed considerations must be made when working with these tools. The protocol included here should provide a basis for the development, characterization, optimization, and application of PORTLs for a wide range of GPCRs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lagerstrom MC, Schioth HB (2008) Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov 7(4):339–357

    Article  PubMed  Google Scholar 

  2. Hilger D, Masureel M, Kobilka BK (2018) Structure and dynamics of GPCR signaling complexes. Nat Struct Mol Biol 25(1):4–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Niswender CM, Conn PJ (2010) Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 50:295–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pin JP, Bettler B (2016) Organization and functions of mGlu and GABAB receptor complexes. Nature 540(7631):60–68

    Article  CAS  PubMed  Google Scholar 

  5. Riccardi D, Kemp PJ (2012) The calcium-sensing receptor beyond extracellular calcium homeostasis: conception, development, adult physiology, and disease. Annu Rev Physiol 74:271–297

    Article  CAS  PubMed  Google Scholar 

  6. Clemmensen C, Smajilovic S, Wellendorph P, Bräuner-Osborne H (2014) The GPCR, class C, group 6, subtype A (GPRC6A) receptor: from cloning to physiological function. Br J Pharmacol 171(5):1129–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sutton LP, Orlandi C, Song C, Oh WC, Muntean BS, Xie K, Filippini A, Xie X, Satterfield R, Yaeger JDW, Renner KJ, Young SM Jr, Xu B, Kwon H, Martemyanov KA (2018) Orphan receptor GPR158 controls stress-induced depression. Elife 7. https://doi.org/10.7554/eLife.33273

  8. Spangler SM, Bruchas MR (2017) Optogenetic approaches for dissecting neuromodulation and GPCR signaling in neural circuits. Curr Opin Pharmacol 32:56–70

    Article  CAS  PubMed  Google Scholar 

  9. Callaway EM, Katz LC (1993) Photostimulation using caged glutamate reveals functional circuitry in living brain slices. Proc Natl Acad Sci U S A 90(16):7661–7665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Reiner A, Levitz J, Isacoff EY (2015) Controlling ionotropic and metabotropic glutamate receptors with light: principles and potential. Curr Opin Pharmacol 20:135–143

    Article  CAS  PubMed  Google Scholar 

  11. Gorostiza P, Volgraf M, Numano R, Szobota S, Trauner D, Isacoff EY (2007) Mechanisms of photoswitch conjugation and light activation of an ionotropic glutamate receptor. Proc Natl Acad Sci U S A 104:10865–10870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Roth BL (2016) DREADDs for neuroscientists. Neuron 89(4):683–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL (2007) Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci U S A 104(12):5163–5168

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gomez JL, Bonaventura J, Lesniak W, Mathews WB, Sysa-Shah P, Rodriguez LA, Ellis RJ, Richie CT, Harvey BK, Dannals RF, Pomper MG, Bonci A, Michaelides M (2017) Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science 357(6350):503–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rost BR, Schneider-Warme F, Schmitz D, Hegemann P (2017) Optogenetic tools for subcellular applications in neuroscience. Neuron 96(3):572–603

    Article  CAS  PubMed  Google Scholar 

  16. Morri M, Sanchez-Romero I, Tichy AM, Kainrath S, Gerrard EJ, Hirschfeld PP, Schwarz J, Janovjak H (2018) Optical functionalization of human Class A orphan G-protein-coupled receptors. Nat Commun 9(1):1950

    Article  PubMed  PubMed Central  Google Scholar 

  17. Airan RD, Thompson KR, Fenno LE, Bernstein H, Deisseroth K (2009) Temporally precise in vivo control of intracellular signalling. Nature 458(7241):1025–1029

    Article  CAS  PubMed  Google Scholar 

  18. Siuda ER, Copits BA, Schmidt MJ, Baird MA, Al-Hasani R, Planer WJ, Funderburk SC, McCall JG, Gereau RWt, Bruchas MR (2015) Spatiotemporal control of opioid signaling and behavior. Neuron 86(4):923–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Oh E, Maejima T, Liu C, Deneris E, Herlitze S (2010) Substitution of 5-HT1A receptor signaling by a light-activated G protein-coupled receptor. J Biol Chem 285(40):30825–30836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Levitz J, Pantoja C, Gaub B, Janovjak H, Reiner A, Hoagland A, Schoppik D, Kane B, Stawski P, Schier AF, Trauner D, Isacoff EY (2013) Optical control of metabotropic glutamate receptors. Nat Neurosci 16(4):507–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Masseck OA, Spoida K, Dalkara D, Maejima T, Rubelowski JM, Wallhorn L, Deneris ES, Herlitze S (2014) Vertebrate cone opsins enable sustained and highly sensitive rapid control of Gi/o signaling in anxiety circuitry. Neuron 81(6):1263–1273

    Article  CAS  PubMed  Google Scholar 

  22. Kramer RH, Mourot A, Adesnik H (2013) Optogenetic pharmacology for control of native neuronal signaling proteins. Nat Neurosci 16(7):816–823

    Article  PubMed  PubMed Central  Google Scholar 

  23. Banghart M, Borges K, Isacoff E, Trauner D, Kramer RH (2004) Light-activated ion channels for remote control of neuronal firing. Nat Neurosci 7(12):1381–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Volgraf M, Gorostiza P, Numano R, Kramer RH, Isacoff EY, Trauner D (2006) Allosteric control of an ionotropic glutamate receptor with an optical switch. Nat Chem Biol 2(1):47–52

    Article  CAS  PubMed  Google Scholar 

  25. Levitz J, Popescu AT, Reiner A, Isacoff EY (2016) A toolkit for orthogonal and in vivo optical manipulation of ionotropic glutamate receptors. Front Mol Neurosci 9:2

    Article  PubMed  PubMed Central  Google Scholar 

  26. Levitz J, Habrian C, Bharill S, Fu Z, Vafabakhsh R, Isacoff EY (2016) Mechanism of assembly and cooperativity of homomeric and heteromeric metabotropic glutamate receptors. Neuron 92(1):143–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Carroll EC, Berlin S, Levitz J, Kienzler MA, Yuan Z, Madsen D, Larsen DS, Isacoff EY (2015) Two-photon brightness of azobenzene photoswitches designed for glutamate receptor optogenetics. Proc Natl Acad Sci U S A 112(7):E776–E785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li D, Herault K, Zylbersztejn K, Lauterbach MA, Guillon M, Oheim M, Ropert N (2015) Astrocyte VAMP3 vesicles undergo Ca2+-independent cycling and modulate glutamate transporter trafficking. J Physiol 593(13):2807–2832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. DuBay KH, Iwan K, Osorio-Planes L, Geissler PL, Groll M, Trauner D, Broichhagen J (2018) A predictive approach for the optical control of carbonic anhydrase II activity. ACS Chem Biol 13(3):793–800

    Article  CAS  PubMed  Google Scholar 

  30. Broichhagen J, Damijonaitis A, Levitz J, Sokol KR, Leippe P, Konrad D, Isacoff EY, Trauner D (2015) Orthogonal optical control of a G protein-coupled receptor with a SNAP-tethered photochromic ligand. ACS Cent Sci 1(7):383–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Levitz J, Broichhagen J, Leippe P, Konrad D, Trauner D, Isacoff EY (2017) Dual optical control and mechanistic insights into photoswitchable group II and III metabotropic glutamate receptors. Proc Natl Acad Sci U S A 114(17):e3546–e3554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gautier A, Juillerat A, Heinis C, Correa IR Jr, Kindermann M, Beaufils F, Johnsson K (2008) An engineered protein tag for multiprotein labeling in living cells. Chem Biol 15(2):128–136

    Article  CAS  PubMed  Google Scholar 

  33. Schonberger M, Trauner D (2014) A photochromic agonist for mu-opioid receptors. Angew Chem Int Ed Engl 53(12):3264–3267

    Article  PubMed  Google Scholar 

  34. Donthamsetti PC, Winter N, Schonberger M, Levitz J, Stanley C, Javitch JA, Isacoff EY, Trauner D (2017) Optical control of dopamine receptors using a photoswitchable tethered inverse agonist. J Am Chem Soc 139(51):18522–18535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Broichhagen J, Podewin T, Meyer-Berg H, von Ohlen Y, Johnston NR, Jones BJ, Bloom SR, Rutter GA, Hoffmann-Roder A, Hodson DJ, Trauner D (2015) Optical control of insulin secretion using an incretin switch. Angew Chem Int Ed Engl 54(51):15565–15569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Broichhagen J, Johnston NR, von Ohlen Y, Meyer-Berg H, Jones BJ, Bloom SR, Rutter GA, Trauner D, Hodson DJ (2016) Allosteric optical control of a class B G-protein-coupled receptor. Angew Chem Int Ed Engl 55(19):5865–5868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Agnetta L, Kauk M, Canizal MCA, Messerer R, Holzgrabe U, Hoffmann C, Decker M (2017) A photoswitchable dualsteric ligand controlling receptor efficacy. Angew Chem Int Ed Engl 56(25):7282–7287

    Article  CAS  PubMed  Google Scholar 

  38. Westphal MV, Schafroth MA, Sarott RC, Imhof MA, Bold CP, Leippe P, Dhopeshwarkar A, Grandner JM, Katritch V, Mackie K, Trauner D, Carreira EM, Frank JA (2017) Synthesis of photoswitchable delta(9)-tetrahydrocannabinol derivatives enables optical control of cannabinoid receptor 1 signaling. J Am Chem Soc 139(50):18206–18212

    Article  CAS  PubMed  Google Scholar 

  39. Hauwert NJ, Mocking TAM, Da Costa Pereira D, Kooistra AJ, Wijnen LM, Vreeker GCM, Verweij EWE, De Boer AH, Smit MJ, De Graaf C, Vischer HF, de Esch IJP, Wijtmans M, Leurs R (2018) Synthesis and characterization of a bidirectional photoswitchable antagonist toolbox for real-time GPCR photopharmacology. J Am Chem Soc 140(12):4232–4243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Podewin T, Ast J, Broichhagen J, Fine NHF, Nasteska D, Leippe P, Gailer M, Buenaventura T, Kanda N, Jones BJ, M'Kadmi C, Baneres JL, Marie J, Tomas A, Trauner D, Hoffmann-Roder A, Hodson DJ (2018) Conditional and reversible activation of class A and B G protein-coupled receptors using tethered pharmacology. ACS Cent Sci 4(2):166–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shields BC, Kahuno E, Kim C, Apostolides PF, Brown J, Lindo S, Mensh BD, Dudman JT, Lavis LD, Tadross MR (2017) Deconstructing behavioral neuropharmacology with cellular specificity. Science 356(6333). https://doi.org/10.1126/science.aaj2161

    Article  PubMed  Google Scholar 

  42. Nishiyama J, Mikuni T, Yasuda R (2017) Virus-mediated genome editing via homology-directed repair in mitotic and postmitotic cells in mammalian brain. Neuron 96(4):755–768.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Farrants H, Acosta-Ruiz A, Gutzeit VA, Trauner D, Johnsson K, Levitz J, Broichhagen J (2018) SNAP-tagged nanobodies enable reversible optical control of a G protein-coupled receptor via a remotely tethered photoswitchable ligand. ACS Chem Biol 13(9):2682–2688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Berry MH, Holt A, Levitz J, Broichhagen J, Gaub BM, Visel M, Stanley C, Aghi K, Kim YJ, Cao K, Kramer RH, Trauner D, Flannery J, Isacoff EY (2017) Restoration of patterned vision with an engineered photoactivatable G protein-coupled receptor. Nat Commun 8(1):1862

    Article  PubMed  PubMed Central  Google Scholar 

  45. Atwood BK, Lopez J, Wager-Miller J, Mackie K, Straiker A (2011) Expression of G protein-coupled receptors and related proteins in HEK293, AtT20, BV2, and N18 cell lines as revealed by microarray analysis. BMC Genomics 12:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Doumazane E, Scholler P, Zwier JM, Trinquet E, Rondard P, Pin JP (2011) A new approach to analyze cell surface protein complexes reveals specific heterodimeric metabotropic glutamate receptors. FASEB J 25(1):66–77

    Article  CAS  PubMed  Google Scholar 

  47. Conklin BR, Farfel Z, Lustig KD, Julius D, Bourne HR (1993) Substitution of three amino acids switches receptor specificity of Gq alpha to that of Gi alpha. Nature 363(6426):274–276

    Article  CAS  PubMed  Google Scholar 

  48. Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA, Orger MB, Jayaraman V, Looger LL, Svoboda K, Kim DS (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499(7458):295–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Deo C, Lavis LD (2018) Synthetic and genetically encoded fluorescent neural activity indicators. Curr Opin Neurobiol 50:101–108

    Article  CAS  PubMed  Google Scholar 

  50. Li X, Gutierrez DV, Hanson MG, Han J, Mark MD, Chiel H, Hegemann P, Landmesser LT, Herlitze S (2005) Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc Natl Acad Sci U S A 102(49):17816–17821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sandoz G, Levitz J, Kramer RH, Isacoff EY (2012) Optical control of endogenous proteins with a photoswitchable conditional subunit reveals a role for TREK1 in GABA(B) signaling. Neuron 74(6):1005–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397(6716):259–263

    Article  CAS  PubMed  Google Scholar 

  53. Peng Y, Xiong WC, Mei L (2013) Culture of dissociated hippocampal neurons. Methods Mol Biol 1018:39–47

    Article  CAS  PubMed  Google Scholar 

  54. Lüscher C, Slesinger PA (2010) Emerging concepts for G protein-gated inwardly rectifying potassium (GIRK) channels in health and disease. Nat Rev Neurosci 11(5):301–315

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kienzler MA, Reiner A, Trautman E, Yoo S, Trauner D, Isacoff EY (2013) A red-shifted, fast-relaxing azobenzene photoswitch for visible light control of an ionotropic glutamate receptor. J Am Chem Soc 135(47):17683–17686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Iacovelli L, Molinaro G, Battaglia G, Motolese M, Di Menna L, Alfiero M, Blahos J, Matrisciano F, Corsi M, Corti C, Bruno V, De Blasi A, Nicoletti F (2009) Regulation of group II metabotropic glutamate receptors by G protein-coupled receptor kinases: mGlu2 receptors are resistant to homologous desensitization. Mol Pharmacol 75(4):991–1003

    Article  CAS  PubMed  Google Scholar 

  57. Barber DM, Liu SA, Gottschling K, Sumser M, Hollmann M, Trauner D (2017) Optical control of AMPA receptors using a photoswitchable quinoxaline-2,3-dione antagonist. Chem Sci 8(1):611–615

    Article  CAS  PubMed  Google Scholar 

  58. Beharry AA, Woolley GA (2011) Azobenzene photoswitches for biomolecules. Chem Soc Rev 40(8):4422–4437

    Article  CAS  PubMed  Google Scholar 

  59. Dong M, Babalhavaeji A, Samanta S, Beharry AA, Woolley GA (2015) Red-shifting azobenzene photoswitches for in vivo use. Acc Chem Res 48(10):2662–2670

    Article  CAS  PubMed  Google Scholar 

  60. Alagem N, Dvir M, Reuveny E (2001) Mechanism of Ba2+ block of a mouse inwardly rectifying K+ channel: differential contribution by two discrete residues. J Physiol 534(Pt 2):381–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jin W, Lu Z (1998) A novel high-affinity inhibitor for inward-rectifier K+ channels. Biochemistry 37(38):13291–13299

    Article  CAS  PubMed  Google Scholar 

  62. Hackley CR, Mazzoni EO, Blau J (2018) cAMPr: a single-wavelength fluorescent sensor for cyclic AMP. Sci Signal 11(520). https://doi.org/10.1126/scisignal.aah3738

    Article  PubMed  PubMed Central  Google Scholar 

  63. Klarenbeek J, Goedhart J, van Batenburg A, Groenewald D, Jalink K (2015) Fourth-generation epac-based FRET sensors for cAMP feature exceptional brightness, photostability and dynamic range: characterization of dedicated sensors for FLIM, for ratiometry and with high affinity. PLoS One 10(4):e0122513

    Article  PubMed  PubMed Central  Google Scholar 

  64. Harada K, Ito M, Wang X, Tanaka M, Wongso D, Konno A, Hirai H, Hirase H, Tsuboi T, Kitaguchi T (2017) Red fluorescent protein-based cAMP indicator applicable to optogenetics and in vivo imaging. Sci Rep 7(1):7351

    Article  PubMed  PubMed Central  Google Scholar 

  65. Stauffer TP, Ahn S, Meyer T (1998) Receptor-induced transient reduction in plasma membrane PtdIns(4,5)P2 concentration monitored in living cells. Curr Biol 8(6):343–346

    Article  CAS  PubMed  Google Scholar 

  66. Harvey CD, Ehrhardt AG, Cellurale C, Zhong H, Yasuda R, Davis RJ, Svoboda K (2008) A genetically encoded fluorescent sensor of ERK activity. Proc Natl Acad Sci U S A 105(49):19264–19269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. de la Cova C, Townley R, Regot S, Greenwald I (2017) A real-time biosensor for ERK activity reveals signaling dynamics during C. elegans cell fate specification. Dev Cell 42(5):542–553.e4

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zhou X, Clister TL, Lowry PR, Seldin MM, Wong GW, Zhang J (2015) Dynamic visualization of mTORC1 activity in living cells. Cell Rep. https://doi.org/10.1016/j.celrep.2015.02.031

    Article  CAS  PubMed  Google Scholar 

  69. Lee SJR, Escobedo-Lozoya Y, Szatmari EM, Yasuda R (2009) Activation of CaMKII in single dendritic spines during long-term potentiation. Nature 458(7236):299–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ai M, Mills H, Kanai M, Lai J, Deng J, Schreiter E, Looger L, Neubert T, Suh G (2015) Green-to-red photoconversion of GCaMP. PLoS One 10(9):e0138127

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Levitz and Broichhagen labs for useful discussion, and all previous and current members of the Isacoff and Trauner labs for their contributions to the development and application of photoswitchable ligands and receptors. J.B. thanks Kai Johnsson for constant support. J.L. is supported by an R35 grant from the National Institute of General Medical Science (1 R35 GM124731).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Levitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Acosta-Ruiz, A., Broichhagen, J., Levitz, J. (2019). Optical Regulation of Class C GPCRs by Photoswitchable Orthogonal Remotely Tethered Ligands. In: Tiberi, M. (eds) G Protein-Coupled Receptor Signaling. Methods in Molecular Biology, vol 1947. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9121-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9121-1_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9120-4

  • Online ISBN: 978-1-4939-9121-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics