Skip to main content

Involvement of MicroRNAs in Diabetes and Its Complications

  • Protocol
  • First Online:
Bioinformatics in MicroRNA Research

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1617))

Abstract

Diabetes is a severe condition worldwide. It is characterized by chronic hyperglycemia and is caused by defects in insulin production, secretion, and action. Both genetic and environmental factors contribute to the development of type 1 and type 2 diabetes. The pathogenesis of diabetes is complex and the underlying molecular mechanisms are only partially understood. MicroRNAs (miRNAs) play a fundamental role in diabetes and its complications. This chapter focuses on the dysregulation of miRNAs involved in the regulation of pancreatic islet insulin production and secretion as well as action and signaling in peripheral tissues. The roles of miRNAs in the development of diabetic complications are also discussed. Modulating miRNA expression, by either upregulation or inhibition, holds a promise as a strategy for treating this metabolic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Inzucchi SE, Sherwin RS (2011) Type 1 diabetes mellitus, Cecil Med. 24th Ed Phila. Pa Saunders Elsevier

    Google Scholar 

  2. Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87(1):4–14

    Article  CAS  PubMed  Google Scholar 

  3. Mokdad AH et al (Jan. 2003) Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA 289(1):76–79

    Article  PubMed  Google Scholar 

  4. Cecil RLF, Goldman L, Schafer AI (2012) Goldman’s cecil medicine, expert consult premium edition—enhanced online features and print, single volume, 24: Goldman’s cecil medicine. Elsevier Health Sciences, Amsterdam

    Google Scholar 

  5. Dokken BB (2008) The pathophysiology of cardiovascular disease and diabetes: beyond blood pressure and lipids. Diabetes Spectr 21(3):160–165

    Article  Google Scholar 

  6. Kolfschoten IGM, Roggli E, Nesca V, Regazzi R (2009) Role and therapeutic potential of microRNAs in diabetes. Diabetes Obes Metab 11:118–129

    Article  CAS  PubMed  Google Scholar 

  7. John B, Sander C, Marks DS (2006) Prediction of human microRNA targets. Methods Mol Biol 342:101–113. Clifton, NJ

    CAS  PubMed  Google Scholar 

  8. Guay C, Roggli E, Nesca V, Jacovetti C, Regazzi R (2011) Diabetes mellitus, a microRNA-related disease? Transl Res 157(4):253–264

    Article  CAS  PubMed  Google Scholar 

  9. Poy MN et al (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432(7014):226–230

    Article  CAS  PubMed  Google Scholar 

  10. Avnit-Sagi T, Kantorovich L, Kredo-Russo S, Hornstein E, Walker MD (2009) The promoter of the pri-miR-375 gene directs expression selectively to the endocrine pancreas. PLoS One 4(4):e5033

    Article  PubMed  PubMed Central  Google Scholar 

  11. Joglekar MV, Joglekar VM, Hardikar AA (2009) Expression of islet-specific microRNAs during human pancreatic development. Gene Expr Patterns 9(2):109–113

    Article  CAS  PubMed  Google Scholar 

  12. Poy MN et al (2009) miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci U S A 106(14):5813–5818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li Y et al (2010) miR-375 enhances palmitate-induced lipoapoptosis in insulin-secreting NIT-1 cells by repressing myotrophin (V1) protein expression. Int J Clin Exp Pathol 3(3):254–264

    CAS  PubMed  PubMed Central  Google Scholar 

  14. El Ouaamari A, Baroukh N, Martens GA, Lebrun P, Pipeleers D, van Obberghen E (2008) miR-375 targets 3′-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells. Diabetes 57(10):2708–2717

    Article  PubMed Central  Google Scholar 

  15. Kloosterman WP, Lagendijk AK, Ketting RF, Moulton JD, Plasterk RHA (2007) Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol 5(8):e203

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lynn FC, Skewes-Cox P, Kosaka Y, McManus MT, Harfe BD, German MS (2007) MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes 56(12):2938–2945

    Article  CAS  PubMed  Google Scholar 

  17. Baroukh N et al (2007) MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic beta-cell lines. J Biol Chem 282(27):19575–19588

    Article  CAS  Google Scholar 

  18. Joglekar MV, Parekh VS, Mehta S, Bhonde RR, Hardikar AA (2007) MicroRNA profiling of developing and regenerating pancreas reveal post-transcriptional regulation of neurogenin3. Dev Biol 311(2):603–612

    Article  CAS  PubMed  Google Scholar 

  19. Krichevsky AM, Sonntag K-C, Isacson O, Kosik KS (2006) Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 24(4):857–864

    Article  CAS  PubMed  Google Scholar 

  20. Conaco C, Otto S, Han J-J, Mandel G (2006) Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci U S A 103(7):2422–2427

    Article  CAS  PubMed Central  Google Scholar 

  21. Lovis P, Gattesco S, Regazzi R (2008) Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs. Biol Chem 389(3):305–312

    Article  CAS  PubMed  Google Scholar 

  22. Cuellar TL, McManus MT (2005) MicroRNAs and endocrine biology. J Endocrinol 187(3):327–332

    Article  CAS  PubMed  Google Scholar 

  23. Plaisance V, Abderrahmani A, Perret-Menoud V, Jacquemin P, Lemaigre F, Regazzi R (2006) MicroRNA-9 controls the expression of granuphilin/Slp4 and the secretory response of insulin-producing cells. J Biol Chem 281(37):26932–26942

    Article  CAS  PubMed  Google Scholar 

  24. Ramachandran D, Roy U, Garg S, Ghosh S, Pathak S, Kolthur-Seetharam U (2011) Sirt1 and mir-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic β-islets. FEBS J 278(7):1167–1174

    Article  CAS  PubMed  Google Scholar 

  25. Sun L-L, Jiang B-G, Li W-T, Zou J-J, Shi Y-Q, Liu Z-M (2011) MicroRNA-15a positively regulates insulin synthesis by inhibiting uncoupling protein-2 expression. Diabetes Res Clin Pract 91(1):94–100

    Article  CAS  PubMed  Google Scholar 

  26. Roggli E et al (2010) Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells. Diabetes 59(4):978–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lovis P et al (2008) Alterations in microRNA expression contribute to fatty acid-induced pancreatic beta-cell dysfunction. Diabetes 57(10):2728–2736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ortega FJ et al (2010) MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation. PloS ONE 5(2):e9022

    Article  PubMed  PubMed Central  Google Scholar 

  29. Stump CS, Henriksen EJ, Wei Y, Sowers JR (2006) The metabolic syndrome: role of skeletal muscle metabolism. Ann Med 38(6):389–402

    Article  CAS  PubMed  Google Scholar 

  30. Granjon A et al (2009) The microRNA signature in response to insulin reveals its implication in the transcriptional action of insulin in human skeletal muscle and the role of a sterol regulatory element-binding protein-1c/myocyte enhancer factor 2C pathway. Diabetes 58(11):2555–2564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. He A, Zhu L, Gupta N, Chang Y, Fang F (2007) Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes. Mol Endocrinol 21(11):2785–2794

    Article  CAS  PubMed  Google Scholar 

  32. Gallagher IJ et al (2010) Integration of microRNA changes in vivo identifies novel molecular features of muscle insulin resistance in type 2 diabetes. Genome Med 2(2):9

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yu X-Y et al (2008) Glucose induces apoptosis of cardiomyocytes via microRNA-1 and IGF-1. Biochem Biophys Res Commun 376(3):548–552

    Article  CAS  PubMed  Google Scholar 

  34. Elia L et al (Dec. 2009) Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation 120(23):2377–2385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sandhu MS, Heald AH, Gibson JM, Cruickshank JK, Dunger DB, Wareham NJ (2002) Circulating concentrations of insulin-like growth factor-I and development of glucose intolerance: a prospective observational study. Lancet 359(9319):1740–1745. Lond Engl

    Article  CAS  PubMed  Google Scholar 

  36. Horie T et al (2009) MicroRNA-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiac myocytes. Biochem Biophys Res Commun 389(2):315–320

    Article  CAS  PubMed  Google Scholar 

  37. Zampetaki A et al (2010) Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 107(6):810–817

    Article  CAS  PubMed  Google Scholar 

  38. Huang B et al (2009) MicroRNA expression profiling in diabetic GK rat model. Acta Biochim Biophys Sin 41(6):472–477

    Article  CAS  PubMed  Google Scholar 

  39. Kiriakidou M et al (2004) A combined computational-experimental approach predicts human microRNA targets. Genes Dev 18(10):1165–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Niu W et al (2003) Maturation of the regulation of GLUT4 activity by p38 MAPK during L6 cell myogenesis. J Biol Chem 278(20):17953–17962

    Article  CAS  PubMed  Google Scholar 

  41. Karolina DS et al (2011) MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PloS One 6(8):e22839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Samuel VT, Shulman GI (2012) Mechanisms for insulin resistance: common threads and missing links. Cell 148(5):852–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Raghow R, Yellaturu C, Deng X, Park EA, Elam MB (2008) SREBPs: the crossroads of physiological and pathological lipid homeostasis. Trends Endocrinol Metab 19(2):65–73

    Article  CAS  PubMed  Google Scholar 

  44. Sacco J, Adeli K (2012) MicroRNAs: emerging roles in lipid and lipoprotein metabolism. Curr Opin Lipidol 23(3):220–225

    Article  CAS  PubMed  Google Scholar 

  45. Rayner KJ et al (2010) MiR-33 contributes to the regulation of cholesterol homeostasis. Science 328(5985):1570–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gerin I et al (2010) Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation. J Biol Chem 285(44):33652–33661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Horie T et al (2010) MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo. Proc Natl Acad Sci U S A 107(40):17321–17326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wijesekara N et al (2012) miR-33a modulates ABCA1 expression, cholesterol accumulation, and insulin secretion in pancreatic islets. Diabetes 61(3):653–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kahn SE, Hull RL, Utzschneider KM (2006) Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444(7121):840–846

    Article  CAS  PubMed  Google Scholar 

  50. Xie H, Lim B, Lodish HF (May 2009) MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes 58(5):1050–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Esau C et al (2004) MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 279(50):52361–52365

    Article  CAS  PubMed  Google Scholar 

  52. Kajimoto K, Naraba H, Iwai N (2006) MicroRNA and 3T3-L1 pre-adipocyte differentiation. RNA 12(9):1626–1632. N. Y. N

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Xu P, Vernooy SY, Guo M, Hay BA (2003) The drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol 13(9):790–795

    Article  CAS  PubMed  Google Scholar 

  54. Teleman AA, Cohen SM (2006) Drosophila lacking microRNA miR-278 are defective in energy homeostasis. Genes Dev 20(4):417–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Adler S (2004) Diabetic nephropathy: linking histology, cell biology, and genetics. Kidney Int 66(5):2095–2106

    Article  PubMed  Google Scholar 

  56. Krupa A, Jenkins R, Luo DD, Lewis A, Phillips A, Fraser D (2010) Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy. J Am Soc Nephrol 21(3):438–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kato M et al (2007) MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-β-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci U S A 104(9):3432–3437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Putta S, Lanting L, Sun G, Lawson G, Kato M, Natarajan R (2012) Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy. J Am Soc Nephrol 23(3):458–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chung ACK, Huang XR, Meng X, Lan HY (2010) miR-192 mediates TGF-beta/Smad3-driven renal fibrosis. J Am Soc Nephrol 21(8):1317–1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Du B et al (2010) High glucose down-regulates miR-29a to increase collagen IV production in HK-2 cells. FEBS Lett 584(4):811–816

    Article  CAS  PubMed  Google Scholar 

  61. Wang Q et al (2008) MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy. FASEB J 22(12):4126–4135. Off Publ Fed Am Soc Exp Biol

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Schena FP, Gesualdo L (2005) Pathogenetic mechanisms of diabetic nephropathy. J Am Soc Nephrol 16(3 suppl 1):S30–S33

    Article  CAS  PubMed  Google Scholar 

  63. van Hoeven KH, Factor SM (1990) A comparison of the pathological spectrum of hypertensive, diabetic, and hypertensive-diabetic heart disease. Circulation 82(3):848–855

    Article  PubMed  Google Scholar 

  64. Tang X, Tang G, Özcan S (2008) Role of MicroRNAs in diabetes. Biochim Biophys Acta 1779(11):697–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang Y et al (2007) Ionic mechanisms underlying abnormal QT prolongation and the associated arrhythmias in diabetic rabbits: a role of rapid delayed rectifier K+ current. Cell Physiol Biochem 19(5–6):225–238. Int J Exp Cell Physiol Biochem Pharmacol

    Article  CAS  PubMed  Google Scholar 

  66. Carè A et al (2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med 13(5):613–618

    Article  PubMed  Google Scholar 

  67. Collins KK, Van Hare GF (2006) Advances in congenital long QT syndrome. Curr Opin Pediatr 18(5):497–502

    Article  PubMed  Google Scholar 

  68. Mizusawa Y, Horie M, Wilde AAM (2014) Genetic and clinical advances in congenital long QT syndrome. Circ J 78(12):2827–2833

    Article  PubMed  Google Scholar 

  69. Paulussen A et al (2000) Analysis of the human KCNH2(HERG) gene: identification and characterization of a novel mutation Y667X associated with long QT syndrome and a non-pathological 9 bp insertion. Hum Mutat 15(5):483

    Article  CAS  PubMed  Google Scholar 

  70. Shan H et al (2013) Upregulation of microRNA-1 and microRNA-133 contributes to arsenic-induced cardiac electrical remodeling. Int J Cardiol 167(6):2798–2805

    Article  PubMed  Google Scholar 

  71. Xiao J et al (2007) MicroRNA miR-133 represses HERG K+ channel expression contributing to QT prolongation in diabetic hearts. J Biol Chem 282(17):12363–12367

    Article  CAS  PubMed  Google Scholar 

  72. Xiao J et al (2011) MicroRNA miR-133 represses HERG K+ channel expression contributing to QT prolongation in diabetic hearts. J Biol Chem 286(32):28656–28656

    Article  CAS  Google Scholar 

  73. Shen E, Diao X, Wang X, Chen R, Hu B (2011) MicroRNAs involved in the mitogen-activated protein kinase cascades pathway during glucose-induced cardiomyocyte hypertrophy. Am J Pathol 179(2):639–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lu H, Buchan RJ, Cook SA (2010) MicroRNA-223 regulates Glut4 expression and cardiomyocyte glucose metabolism. Cardiovasc Res 86(3):410–420

    Article  CAS  PubMed  Google Scholar 

  75. Chen X et al (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18(10):997–1006

    Article  CAS  PubMed  Google Scholar 

  76. Fichtlscherer S et al (2010) Circulating microRNAs in patients with coronary artery disease. Circ Res 107(5):677–684

    Article  CAS  PubMed  Google Scholar 

  77. Wang C et al (2016) Increased serum microRNAs are closely associated with the presence of microvascular complications in type 2 diabetes mellitus. Sci Rep 6:20032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chien H-Y et al (2015) Circulating microRNA as a diagnostic marker in populations with type 2 diabetes mellitus and diabetic complications. J Chin Med Assoc 78(4):204–211

    Article  PubMed  Google Scholar 

  79. Pescador N, Pérez-Barba M, Ibarra JM, Corbatón A, Martínez-Larrad MT, Serrano-Ríos M (2013) Serum circulating microRNA profiling for identification of potential type 2 diabetes and obesity biomarkers. PloS One 8(10):e77251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hutvágner G, Simard MJ, Mello CC, Zamore PD (2004) Sequence-specific inhibition of small RNA function. PLoS Biol 2(4):E98

    Article  PubMed  PubMed Central  Google Scholar 

  81. Krützfeldt J et al (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438(7068):685–689

    Article  PubMed  Google Scholar 

  82. Lanford RE et al (2010) Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327(5962):198–201

    Article  CAS  PubMed  Google Scholar 

  83. Frost RJA, Olson EN (2011) Control of glucose homeostasis and insulin sensitivity by the let-7 family of microRNAs. Proc Natl Acad Sci U S A 108(52):21075–21080

    Article  CAS  PubMed Central  Google Scholar 

  84. Merrins MJ, Stuenkel EL (2008) Kinetics of Rab27a-dependent actions on vesicle docking and priming in pancreatic beta-cells. J Physiol 586(22):5367–5381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Wu M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Wu, B., Miller, D. (2017). Involvement of MicroRNAs in Diabetes and Its Complications. In: Huang, J., et al. Bioinformatics in MicroRNA Research. Methods in Molecular Biology, vol 1617. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7046-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7046-9_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7044-5

  • Online ISBN: 978-1-4939-7046-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics