Skip to main content

Imaging DNA Structure by Atomic Force Microscopy

  • Protocol
  • First Online:
Chromosome Architecture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1431))

Abstract

Atomic force microscopy (AFM) is a microscopy technique that uses a sharp probe to trace a sample surface at nanometre resolution. For biological applications, one of its key advantages is its ability to visualize substructure of single molecules and molecular complexes in an aqueous environment. Here, we describe the application of AFM to determine superstructure and secondary structure of surface-bound DNA. The method is also readily applicable to probe DNA–DNA interactions and DNA–protein complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoogenboom BW (2015) AFM in liquids. In: Bhushan B (ed) Encyclopedia of nanotechnology, 2nd edn. Springer, Amsterdam, pp 83–89. doi:10.1007/978-90-481-9751-4

    Google Scholar 

  2. Leung C, Bestembayeva A, Thorogate R, Stinson J, Pyne A, Marcovich C, Yang JL, Drechsler U, Despont M, Jankowski T (2012) Atomic force microscopy with nanoscale cantilevers resolves different structural conformations of the DNA double helix. Nano Lett 12(7):3846–3850. doi:10.1021/nl301857p

    Article  CAS  PubMed  Google Scholar 

  3. Ido S, Kimura K, Oyabu N, Kobayashi K, Tsukada M, Matsushige K, Yamada H (2013) Beyond the helix pitch: direct visualization of native DNA in aqueous solution. ACS Nano 7(2):1817–1822. doi:10.1021/nn400071n

    Article  CAS  PubMed  Google Scholar 

  4. Pyne A, Thompson R, Leung C, Roy D, Hoogenboom BW (2014) Single-molecule reconstruction of oligonucleotide secondary structure by atomic force microscopy. Small 10(16):3257–3261. doi:10.1002/smll.201400265

    Article  CAS  PubMed  Google Scholar 

  5. Crampton N, Yokokawa M, Dryden DTF, Edwardson JM, Rao DN, Takeyasu K, Yoshimura SH, Henderson RM (2007) Fast-scan atomic force microscopy reveals that the type III restriction enzyme EcoP15I Is capable of DNA translocation and looping. Proc Natl Acad Sci U S A 104(31):12755–12760. doi:10.1073/pnas.0700483104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lyubchenko YL (2014) Nanoscale nucleosome dynamics assessed with time-lapse AFM. Biophys Rev 6(2):181–190. doi:10.1007/s12551-013-0121-3

    Article  CAS  PubMed  Google Scholar 

  7. Miyagi A, Ando T, Lyubchenko YL (2011) Dynamics of nucleosomes assessed with time-lapse high-speed atomic force microscopy. Biochemistry 50(37):7901–7908. doi:10.1021/bi200946z

    Article  CAS  PubMed  Google Scholar 

  8. Adamcik J, Jeon J-H, Karczewski KJ, Metzler R, Dietler G (2012) Quantifying supercoiling-induced denaturation bubbles in DNA. Soft Matter 8(33):8651–8658. doi:10.1039/C2SM26089A

    Article  CAS  Google Scholar 

  9. Fogg JM, Kolmakova N, Rees I, Magonov S, Hansma H, Perona JJ, Zechiedrich EL (2006) Exploring writhe in supercoiled minicircle DNA. J Phys Condens Matter 18(14):S145–S159. doi:10.1088/0953-8984/18/14/S01

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bussiek M (2003) Polylysine-coated mica can be used to observe systematic changes in the supercoiled DNA conformation by scanning force microscopy in solution. Nucleic Acids Res 31(22):137. doi:10.1093/nar/gng137

    Article  Google Scholar 

  11. Li D, Lv B, Zhang H, Lee JY, Li T (2014) Positive supercoiling affiliated with nucleosome formation repairs non-B DNA structures. Chem Commun 50(73):10641–10644. doi:10.1039/C4CC04789C

    Article  CAS  Google Scholar 

  12. Osada E, Suzuki Y, Hidaka K, Ohno H, Sugiyama H, Endo M, Saito H (2014) Engineering RNA–protein complexes with different shapes for imaging and therapeutic applications. ACS Nano 8(8):8130–8140. doi:10.1021/nn502253c

    Article  CAS  PubMed  Google Scholar 

  13. Kundukad B, Cong P, van der Maarel JRC, Doyle PS (2013) Time-dependent bending rigidity and helical twist of DNA by rearrangement of bound HU protein. Nucleic Acids Res 41(17):8280–8288. doi:10.1093/nar/gkt593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gaczynska M, Osmulski PA, Jiang Y, Lee J-K, Bermudez V, Hurwitz J (2004) Atomic force microscopic analysis of the binding of the Schizosaccharomyces pombe origin recognition complex and the spOrc4 protein with origin DNA. Proc Natl Acad Sci U S A 101(52):17952–17957. doi:10.2307/3374175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Heddle JG, Mitelheiser S, Maxwell A, Thomson NH (2004) Nucleotide binding to DNA gyrase causes loss of DNA wrap. J Mol Biol 337(3):597–610. doi:10.1016/j.jmb.2004.01.049

    Article  CAS  PubMed  Google Scholar 

  16. Katan AJ, Vlijm R, Lusser A, Dekker C (2015) Dynamics of nucleosomal structures measured by high-speed atomic force microscopy. Small 11(8):976–984. doi:10.1002/smll.201401318

    Article  CAS  PubMed  Google Scholar 

  17. Hansma HG (2001) Surface biology of DNA by atomic force microscopy. Annu Rev Phys Chem 52(1):71–92. doi:10.1146/annurev.physchem.52.1.71

    Article  CAS  PubMed  Google Scholar 

  18. Mou J, Czajkowsky DM, Zhang Y, Shao Z (1995) High-resolution atomic-force microscopy of DNA: the pitch of the double helix. FEBS Lett 371(3):279–282. doi:10.1016/0014-5793(95)00906-P

    Article  CAS  PubMed  Google Scholar 

  19. Maaloum M, Beker A-F, Muller P (2011) Secondary structure of double-stranded DNA under stretching: elucidation of the stretched form. Phys Rev E 83(3):031903. doi:10.1103/PhysRevE.83.031903

    Article  CAS  Google Scholar 

  20. Santos S, Barcons V, Christenson HK, Billingsley DJ, Bonass WA, Font J, Thomson NH (2013) Stability, resolution, and ultra-low wear amplitude modulation atomic force microscopy of DNA: small amplitude small set-point imaging. Appl Phys Lett 103(6):063702. doi:10.1063/1.4817906

    Article  Google Scholar 

  21. Lyubchenko YL, Shlyakhtenko LS (2009) AFM for analysis of structure and dynamics of DNA and protein–DNA complexes. Methods 47(3):206–213. doi:10.1016/j.ymeth.2008.09.002

    Article  CAS  PubMed  Google Scholar 

  22. Hansma HG, Laney DE (1996) DNA binding to mica correlates with cationic radius: assay by atomic force microscopy. Biophys J 70(4):1933–1939. doi:10.1016/S0006-3495(96)79757-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alice L. B. Pyne or Bart W. Hoogenboom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Pyne, A.L.B., Hoogenboom, B.W. (2016). Imaging DNA Structure by Atomic Force Microscopy. In: Leake, M. (eds) Chromosome Architecture. Methods in Molecular Biology, vol 1431. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3631-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3631-1_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3629-8

  • Online ISBN: 978-1-4939-3631-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics