Skip to main content
Log in

Nanoscale nucleosome dynamics assessed with time-lapse AFM

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

A fundamental challenge associated with chromosomal gene regulation is accessibility of DNA within nucleosomes. Recent studies performed by various techniques, including single-molecule approaches, led to the realization that nucleosomes are dynamic structures rather than static systems, as was once believed. Direct data are required in order to understand the dynamics of nucleosomes more clearly and to answer fundamental questions, including: What is the range of nucleosome dynamics? Does a non-ATP-dependent unwrapping process of nucleosomes exist? What are the factors facilitating the large-scale opening and unwrapping of nucleosomes? This review summarizes the results of nucleosome dynamics obtained with time-lapse AFM, including a high-speed version (HS-AFM) capable of visualizing molecular dynamics on the millisecond time scale. With HS-AFM, the dynamics of nucleosomes at a sub-second time scale was observed, allowing one to visualize various pathways of nucleosome dynamics, such as sliding and unwrapping, including complete dissociation. Overall, these findings reveal new insights into the dynamics of nucleosomes and the novel mechanisms controlling spontaneous chromatin dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adrian M, Dubochet J, Lepault J, McDowall AW (1984) Cryo-electron microscopy of viruses. Nature 308(5954):32–36

    Article  CAS  PubMed  Google Scholar 

  • Ahmad K, Henikoff S (2002) Epigenetic consequences of nucleosome dynamics. Cell 111(3):281–284

    Article  CAS  PubMed  Google Scholar 

  • Allen MJ, Dong XF, O’Neill TE, Yau P, Kowalczykowski SC, Gatewood J, Balhorn R, Bradbury EM (1993) Atomic force microscope measurements of nucleosome cores assembled along defined DNA sequences. Biochemistry 32(33):8390–8396

    Article  CAS  PubMed  Google Scholar 

  • Anderson JD, Thastrom A, Widom J (2002) Spontaneous access of proteins to buried nucleosomal DNA target sites occurs via a mechanism that is distinct from nucleosome translocation. Mol Cell Biol 22(20):7147–7157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bednar J, Horowitz RA, Dubochet J, Woodcock CL (1995) Chromatin conformation and salt-induced compaction: three-dimensional structural information from cryoelectron microscopy. J Cell Biol 131(6 Pt 1):1365–1376

    Article  CAS  PubMed  Google Scholar 

  • Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56(9):930–933

    Article  PubMed  Google Scholar 

  • Bucceri A, Kapitza K, Thoma F (2006) Rapid accessibility of nucleosomal DNA in yeast on a second time scale. EMBO J 25(13):3123–3132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bussiek M, Muller G, Waldeck W, Diekmann S, Langowski J (2007) Organisation of nucleosomal arrays reconstituted with repetitive African green monkey alpha-satellite DNA as analysed by atomic force microscopy. Eur Biophys J 37(1):81–93. doi:10.1007/s00249-007-0166-y

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bustamante C, Rivetti C (1996) Visualizing protein-nucleic acid interactions on a large scale with the scanning force microscope. Annu Rev Biophys Biomol Struct 25:395–429

    Article  CAS  PubMed  Google Scholar 

  • Bustamante C, Vesenka J, Tang CL, Rees W, Guthold M, Keller R (1992) Circular DNA molecules imaged in air by scanning force microscopy. Biochemistry 31(1):22–26

    Article  CAS  PubMed  Google Scholar 

  • Cairns BR (2007) Chromatin remodeling: insights and intrigue from single-molecule studies. Nat Struct Mol Biol 14(11):989–996. doi:10.1038/nsmb1333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Daban JR (2011) Electron microscopy and atomic force microscopy studies of chromatin and metaphase chromosome structure. Micron 42(8):733–750. doi:10.1016/j.micron.2011.05.002

    Article  CAS  PubMed  Google Scholar 

  • Du Q, Smith C, Shiffeldrim N, Vologodskaia M, Vologodskii A (2005) Cyclization of short DNA fragments and bending fluctuations of the double helix. Proc Natl Acad Sci USA 102(15):5397–5402. doi:10.1073/pnas.0500983102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Filenko NA, Palets DB, Lyubchenko YL (2012) Structure and dynamics of dinucleosomes assessed by atomic force microscopy. J Amino Acids 2012:650840. doi:10.1155/2012/650840

    Article  PubMed Central  PubMed  Google Scholar 

  • Gross L, Mohn F, Moll N, Schuler B, Criado A, Guitian E, Pena D, Gourdon A, Meyer G (2012) Bond-order discrimination by atomic force microscopy. Science 337(6100):1326–1329. doi:10.1126/science.1225621

    Article  CAS  PubMed  Google Scholar 

  • Hegner M, Wagner P, Semenza G (1993) Immobilizing DNA on gold via thiol modification for atomic force microscopy imaging in buffer solutions. FEBS Lett 336(3):452–456

    Article  CAS  PubMed  Google Scholar 

  • Hihara S, Pack CG, Kaizu K, Tani T, Hanafusa T, Nozaki T, Takemoto S, Yoshimi T, Yokota H, Imamoto N, Sako Y, Kinjo M, Takahashi K, Nagai T, Maeshima K (2012) Local nucleosome dynamics facilitate chromatin accessibility in living mammalian cells. Cell Rep 2(6):1645–1656. doi:10.1016/j.celrep.2012.11.008

    Article  CAS  PubMed  Google Scholar 

  • Hizume K, Yoshimura SH, Takeyasu K (2004) Atomic force microscopy demonstrates a critical role of DNA superhelicity in nucleosome dynamics. Cell Biochem Biophys 40(3):249–261. doi:10.1385/CBB:40:3:249

    Article  CAS  PubMed  Google Scholar 

  • Karymov MA, Tomschik M, Leuba SH, Caiafa P, Zlatanova J (2001) DNA methylation-dependent chromatin fiber compaction in vivo and in vitro: requirement for linker histone. FASEB J 15(14):2631–2641. doi:10.1096/fj.01-0345com

    Article  CAS  PubMed  Google Scholar 

  • Kobori T, Kodama M, Hizume K, Yoshimura SH, Ohtani T, Takeyasu K (2006) Comparative structural biology of the genome: nano-scale imaging of single nucleus from different kingdoms reveals the common physicochemical property of chromatin with a 40nm structural unit. J Electron Microsc (Tokyo) 55(1):31–40. doi:10.1093/jmicro/dfi076

    Article  CAS  Google Scholar 

  • Koopmans WJ, Brehm A, Logie C, Schmidt T, van Noort J (2007) Single-pair FRET microscopy reveals mononucleosome dynamics. J Fluoresc 17(6):785–795

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kornberg RD (1974) Chromatin structure: a repeating unit of histones and DNA. Science 184(4139):868–871

    Article  CAS  PubMed  Google Scholar 

  • Leuba SH, Yang G, Robert C, Samori B, van Holde K, Zlatanova J, Bustamante C (1994) Three-dimensional structure of extended chromatin fibers as revealed by tapping-mode scanning force microscopy. Proc Natl Acad Sci USA 91(24):11621–11625

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li G, Widom J (2004) Nucleosomes facilitate their own invasion. Nat Struct Mol Biol 11(8):763–769

    Article  CAS  PubMed  Google Scholar 

  • Li G, Levitus M, Bustamante C, Widom J (2005) Rapid spontaneous accessibility of nucleosomal DNA. Nat Struct Mol Biol 12(1):46–53

    Article  CAS  PubMed  Google Scholar 

  • Lorch Y, Maier-Davis B, Kornberg RD (2010) Mechanism of chromatin remodeling. Proc Natl Acad Sci USA 107(8):3458–3462. doi:10.1073/pnas.1000398107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luger K, Hansen JC (2005) Nucleosome and chromatin fiber dynamics. Curr Opin Struct Biol 15(2):188–196

    Article  CAS  PubMed  Google Scholar 

  • Luger K, Mader A, Richmond R, Sargent D, Richmond T (1997) Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389(6648):251–260

    Article  CAS  PubMed  Google Scholar 

  • Luger K, Rechsteiner TJ, Richmond TJ (1999) Preparation of nucleosome core particle from recombinant histones. Methods Enzymol 304:3–19

    Article  CAS  PubMed  Google Scholar 

  • Lushnikov AY, Bogdanov A, Lyubchenko YL (2003) DNA recombination: holliday junctions dynamics and branch migration. J Biol Chem 278(44):43130–43134

    Article  CAS  PubMed  Google Scholar 

  • Lyubchenko YL (2004) DNA structure and dynamics: an atomic force microscopy study. Cell Biochem Biophys 41(1):75–98

    Article  CAS  PubMed  Google Scholar 

  • Lyubchenko YL (2011) Preparation of DNA and nucleoprotein samples for AFM imaging. Micron 42(2):196–206. doi:10.1016/j.micron.2010.08.011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lyubchenko YL (2012) AFM imaging in liquid of DNA and protein-DNA complexes. In: Baro AM, Reifenberger R (eds) Atomic force microscopy in liquid: biological applications. Wiley-VCH, Berlin, chap.9

  • Lyubchenko YL, Shlyakhtenko LS (1997) Visualization of supercoiled DNA with atomic force microscopy in situ. Proc Natl Acad Sci USA 94(2):496–501

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lyubchenko YL, Shlyakhtenko LS (2009) AFM for analysis of structure and dynamics of DNA and protein-DNA complexes. Methods 47(3):206–213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lyubchenko YL, Gall AA, Shlyakhtenko LS, Harrington RE, Jacobs BL, Oden PI, Lindsay SM (1992a) Atomic force microscopy imaging of double stranded DNA and RNA. J Biomol Struct Dyn 10(3):589–606

    Article  CAS  PubMed  Google Scholar 

  • Lyubchenko YL, Jacobs BL, Lindsay SM (1992b) Atomic force microscopy of reovirus dsRNA: a routine technique for length measurements. Nucleic Acids Res 20(15):3983–3986

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lyubchenko YL, Gall AA, Shlyakhtenko LS (2001) Atomic force microscopy of DNA and protein-DNA complexes using functionalized mica substrates. In: Moss T (ed) Methods Mol. Biol. DNA-protein interactions; Principles and protocols, vol 148. Humana, Totowa, pp 569–578

    Chapter  Google Scholar 

  • Lyubchenko YL, Shlyakhtenko LS, Ando T (2011) Imaging of nucleic acids with atomic force microscopy. Methods 54(2):274–283. doi:10.1016/j.ymeth.2011.02.001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martin Y, Williams CC, Wickramasinghe HK (1987) Atomic force microscope–force mapping and profiling on a sub 100–Å scale. J Appl Phys 61(10):4723–4729. doi:10.1063/1.338807

    Article  CAS  Google Scholar 

  • Menshikova I, Menshikov E, Filenko N, Lyubchenko YL (2011) Nucleosomes structure and dynamics: effect of CHAPS. Int J Biochem Mol Biol 2(2):129–137

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mikheikin AL, Lushnikov AY, Lyubchenko YL (2006) Effect of DNA supercoiling on the geometry of holliday junctions. Biochemistry 45(43):12998–13006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miyagi A, Ando T, Lyubchenko YL (2011) Dynamics of nucleosomes assessed with time-lapse high-speed atomic force microscopy. Biochemistry 50(37):7901–7908. doi:10.1021/bi200946z

    Article  CAS  PubMed  Google Scholar 

  • Nikova DN, Pope LH, Bennink ML, van Leijenhorst-Groener KA, van der Werf K, Greve J (2004) Unexpected binding motifs for subnucleosomal particles revealed by atomic force microscopy. Biophys J 87(6):4135–4145

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ohnesorge F, Binnig G (1993) True atomic resolution by atomic force microscopy through repulsive and attractive forces. Science 260(5113):1451–1456. doi:10.1126/science.260.5113.1451

    Article  CAS  PubMed  Google Scholar 

  • Ohniwa RL, Morikawa K, Kim J, Kobori T, Hizume K, Matsumi R, Atomi H, Imanaka T, Ohta T, Wada C, Yoshimura SH, Takeyasu K (2007) Atomic force microscopy dissects the hierarchy of genome architectures in eukaryote, prokaryote, and chloroplast. Microsc Microanal 13(1):3–12. doi:10.1017/S1431927607070055

    Article  CAS  PubMed  Google Scholar 

  • Olins AL, Olins DE (1974) Spheroid chromatin units (v bodies). Science 183(4122):330–332

    Article  CAS  PubMed  Google Scholar 

  • Oudet P, Gross-Bellard M, Chambon P (1975) Electron microscopic and biochemical evidence that chromatin structure is a repeating unit. Cell 4(4):281–300

    Article  CAS  PubMed  Google Scholar 

  • Robinson PJ, Fairall L, Huynh VA, Rhodes D (2006) EM measurements define the dimensions of the “30-nm” chromatin fiber: evidence for a compact, interdigitated structure. Proc Natl Acad Sci USA 103(17):6506–6511. doi:10.1073/pnas.0601212103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saha A, Wittmeyer J, Cairns BR (2006) Chromatin remodelling: the industrial revolution of DNA around histones. Nat Rev Mol Cell Biol 7(6):437–447. doi:10.1038/nrm1945

    Article  CAS  PubMed  Google Scholar 

  • Segal E, Widom J (2009) What controls nucleosome positions? Trends Genet 25(8):335–343. doi:10.1016/j.tig.2009.06.002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shlyakhtenko LS, Gall AA, Filonov A, Cerovac Z, Lushnikov A, Lyubchenko YL (2003) Silatrane-based surface chemistry for immobilization of DNA, protein-DNA complexes and other biological materials. Ultramicroscopy 97(1–4):279–287

    Article  CAS  PubMed  Google Scholar 

  • Shlyakhtenko LS, Lushnikov AY, Lyubchenko YL (2009) Dynamics of nucleosomes revealed by time-lapse atomic force microscopy. Biochemistry 48(33):7842–7848. doi:10.1021/bi900977t

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suzuki Y, Higuchi Y, Hizume K, Yokokawa M, Yoshimura SH, Yoshikawa K, Takeyasu K (2010) Molecular dynamics of DNA and nucleosomes in solution studied by fast-scanning atomic force microscopy. Ultramicroscopy 110(6):682–688. doi:10.1016/j.ultramic.2010.02.032

    Article  CAS  PubMed  Google Scholar 

  • Thoma F (2005) Repair of UV lesions in nucleosomes–intrinsic properties and remodeling. DNA Repair (Amst) 4(8):855–869

    Article  CAS  Google Scholar 

  • Tims HS, Widom J (2007) Stopped-flow fluorescence resonance energy transfer for analysis of nucleosome dynamics. Methods 41(3):296–303

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tomschik M, Karymov MA, Zlatanova J, Leuba SH (2001) The archaeal histone-fold protein HMf organizes DNA into bona fide chromatin fibers. Structure 9(12):1201–1211

    Article  CAS  PubMed  Google Scholar 

  • Uchihashi T, Ando T (2011) High-speed atomic force microscopy and biomolecular processes. Methods Mol Biol 736:285–300. doi:10.1007/978-1-61779-105-5_18

    Article  CAS  PubMed  Google Scholar 

  • Vesenka J, Guthold M, Tang CL, Keller D, Delaine E, Bustamante C (1992) Substrate preparation for reliable imaging of DNA molecules with the scanning force microscope. Ultramicroscopy 42–44(Pt B):1243–1249

    Article  PubMed  Google Scholar 

  • Woodcock CL, Horowitz RA (1997) Electron microscopy of chromatin. Methods 12(1):84–95. doi:10.1006/meth.1997.0450

    Article  CAS  PubMed  Google Scholar 

  • Woodcock CL, Safer JP, Stanchfield JE (1976) Structural repeating units in chromatin. I. Evidence for their general occurrence. Exp Cell Res 97:101–110

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Takeyasu K, Shao Z (1992) Atomic force microscopy of DNA molecules. FEBS Lett 301(2):173–176

    Article  CAS  PubMed  Google Scholar 

  • Yodh JG, Lyubchenko YL, Shlyakhtenko LS, Woodbury N, Lohr D (1999) Evidence for nonrandom behavior in 208–12 subsaturated nucleosomal array populations analyzed by AFM. Biochemistry 38(48):15756–15763

    Article  CAS  PubMed  Google Scholar 

  • Yodh JG, Woodbury N, Shlyakhtenko LS, Lyubchenko YL, Lohr D (2002) Mapping nucleosome locations on the 208–12 by AFM provides clear evidence for cooperativity in array occupation. Biochemistry 41(11):3565–3574

    Article  CAS  PubMed  Google Scholar 

  • Zhong Q, Inniss D, Kjoller K, Elings VB (1993) Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy. Surf Sci Lett 290:L688–L692

    CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by grants from the National Institutes of Health (5P01GM091743-02 and 5 R01 GM096039-02), the U.S. Department of Energy Grant DE-FG02-08ER64579, the National Science Foundation (EPS—1004094) and the Nebraska Research Initiative. The author thanks Luda Shlyakhtenko for helpful discussions and current and former members of the laboratory for their hard work on the nucleosome project and Rebecca Bigelow for editing of the manuscript.

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri L. Lyubchenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyubchenko, Y.L. Nanoscale nucleosome dynamics assessed with time-lapse AFM. Biophys Rev 6, 181–190 (2014). https://doi.org/10.1007/s12551-013-0121-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-013-0121-3

Keywords

Navigation