Skip to main content

Imaging Bacteria and Biofilms on Hardware and Periprosthetic Tissue in Orthopedic Infections

  • Protocol
  • First Online:
Microbial Biofilms

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1147))

Abstract

Infection is a major complication of total joint arthroplasty (TJA) surgery, and even though it is now as low as 1 % in some hospitals, the increasing number of primary surgeries translates to tens of thousands of revisions due to prosthetic joint infection (PJI). In many cases the only solution is revision surgery in which the hardware is removed. This process is extremely long and painful for patients and is a considerable financial burden for the health-care system. A significant proportion of the difficulties in diagnosis and treatment of PJI are associated with biofilm formation where bacteria attach to the surface of the prosthesis and periprosthetic tissue and build a 3-D biofilm community encased in an extracellular polymeric slime (EPS) matrix. Bacteria in biofilms have a low metabolic rate which is thought to be a major contributor to their recalcitrance to antibiotic treatment. The diagnosis of biofilm infections is difficult due to the fact that bacteria in biofilms are not readily cultured with standard clinical microbiology techniques. To identify and visualize in situ biofilm bacteria in orthopedic samples, we have developed protocols for the collection of samples in the operating room, for molecular fluorescent staining with 16S rRNA fluorescence in situ hybridization (FISH), and for imaging of samples using confocal laser scanning microscopy (CLSM). Direct imaging is the only method which can definitively identify biofilms on implants and complements both culture and culture-independent diagnostic methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ulrich SD, Seyler TM, Bennett D et al (2008) Total hip arthroplasties: what are the reasons for revision? Int Orthop 32:597–604

    Article  PubMed Central  PubMed  Google Scholar 

  2. Daigle ME, Weinstein AM, Katz JN et al (2012) The cost-effectiveness of total joint arthroplasty: a systematic review of published literature. Best Pract Res Clin Rheumatol 26:649–658

    Article  PubMed  Google Scholar 

  3. Sadoghi P, Liebensteiner M, Agreiter M et al (2013) Revision surgery after total joint arthroplasty: a complication-based analysis using worldwide arthroplasty registers. J Arthroplasty 28:1329–1332

    Article  PubMed  Google Scholar 

  4. Gomez E, Cazanave C, Cunningham SA et al (2012) Prosthetic joint infection diagnosis using broad-range PCR of biofilms dislodged from knee and hip arthroplasty surfaces using sonication. J Clin Microbiol 50:3501–3508

    Article  PubMed Central  PubMed  Google Scholar 

  5. Rasouli MR, Harandi AA, Adeli B et al (2012) Revision total knee arthroplasty: infection should be ruled out in all cases. J Arthroplasty 27:1239–1243

    Article  PubMed  Google Scholar 

  6. Stoodley P, Nistico L, Johnson S et al (2008) Direct demonstration of viable Staphylococcus aureus biofilms in an infected total joint arthroplasty. A case report. J Bone Joint Surg Am 90:1751–1758

    Article  PubMed Central  PubMed  Google Scholar 

  7. Stoodley P, Conti SF, DeMeo PJ et al (2011) Characterization of a mixed MRSA/MRSE biofilm in an explanted total ankle arthroplasty. FEMS Immunol Med Microbiol 62:66–74

    Article  PubMed  CAS  Google Scholar 

  8. Palmer M, Costerton W, Sewecke J et al (2011) Molecular techniques to detect biofilm bacteria in long bone nonunion: a case report. Clin Orthop Relat Res 469:3037–3042

    Article  PubMed Central  PubMed  Google Scholar 

  9. Hall-Stoodley L, Stoodley P, Kathju S et al (2012) Towards diagnostic guidelines for biofilm-associated infections. FEMS Immunol Med Microbiol 65:127–145

    Article  PubMed  CAS  Google Scholar 

  10. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the environment to infectious disease. Nat Rev Microbiol 2:95–108

    Article  PubMed  CAS  Google Scholar 

  11. Post JC, Preston RA, Aul JJ et al (1995) Molecular analysis of bacterial pathogens in otitis media with effusion. JAMA 273:1598–1604

    Article  PubMed  CAS  Google Scholar 

  12. Amann R, Ludwig V, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    PubMed Central  PubMed  CAS  Google Scholar 

  13. Hall-Stoodley L, Hu FZ, Gieseke A et al (2006) Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. JAMA 296:202–211

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Nistico L, Kreft R, Gieseke A et al (2011) Adenoid reservoir for pathogenic biofilm bacteria. J Clin Microbiol 49:1411–1420

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Kathju S, Nistico L, Hall-Stoodley L et al (2009) Chronic surgical site infection due to suture-associated polymicrobial biofilm. Surg Infect (Larchmt) 10:457–461

    Article  Google Scholar 

  16. Hall-Stoodley L, Nistico L, Sambanthamoorthy K et al (2008) Characterization of biofilm matrix, degradation by DNase treatment and evidence of capsule downregulation in Streptococcus pneumoniae clinical isolates. BMC Microbiol 8:173

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Manz W, Amann R, Ludwig W et al (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions. Syst Appl Microbiol 15:593–600

    Article  Google Scholar 

  18. Amann RI, Krumholz L, Stahl DA (1990) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172:762–770

    PubMed Central  PubMed  CAS  Google Scholar 

  19. Pernthaler A, Pernthaler J, Amann R (2002) Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol 68:3094–3101

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Hugenholtz P, Gene WT, Blackall LL (2001) Design and evaluation of 16S rRNA-targeted oligonucleotide probes for fluorescence in situ hybridization. In: Lieberman BA (ed) Steroid receptors methods: protocols and assays. Humana Press, Totowa, NJ, pp 29–41

    Google Scholar 

  21. Thurnheer T, Gmür R, Guggenheim B (2004) Multiplex FISH analysis of a six-species bacterial biofilm. J Microbiol Methods 56:37–47

    Article  PubMed  CAS  Google Scholar 

  22. Nistico L, Gieseke A, Stoodley P et al (2009) Fluorescence in situ hybridization for the detection of biofilm in the middle ear and upper respiratory tract mucosa. Methods Mol Biol 493:191–215

    Article  PubMed  CAS  Google Scholar 

  23. Trebesius K, Leitritz L, Adler K et al (2000) Culture independent and rapid identification of bacterial pathogens in necrotising fasciitis and streptococcal toxic shock syndrome by fluorescence in situ hybridisation. Med Microbiol Immunol 188:169–175

    Article  PubMed  CAS  Google Scholar 

  24. Amann R, Snaidr J, Wagner M et al (1996) In situ visualization of high genetic diversity in a natural microbial community. J Bacteriol 178:3496–3500

    PubMed Central  PubMed  CAS  Google Scholar 

  25. Kempf VA, Tresbesius K, Autenrieth IB (2000) Fluorescent in situ hybridization allows rapid identification of microorganisms in blood cultures. J Clin Microbiol 38:830–838

    PubMed Central  PubMed  CAS  Google Scholar 

  26. Hodgart M, Trebesius K, Geiger AM et al (2000) Specific and rapid detection by fluorescent in situ hybridization of bacteria in clinical samples obtained from cystic fibrosis patients. J Clin Microbiol 38:818–825

    Google Scholar 

  27. Poppert S, Riecker M, Essig A (2010) Rapid identification of Propionibacterium acnes from blood cultures by fluorescence in situ hybridization. Diagn Microbiol Infect Dis 66:214–216

    Article  PubMed  CAS  Google Scholar 

  28. Wellinghausen N, Bartel M, Essig A et al (2007) Rapid identification of clinically relevant Enterococcus species by fluorescence in situ hybridization. J Clin Microbiol 45:3424–3426

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Moter A, Leist G, Rudolph R et al (1998) Fluorescence in situ hybridization shows spatial distribution of as yet uncultured treponemes in biopsies from digital dermatitis lesions. Microbiology 144:2459–2467

    Article  PubMed  CAS  Google Scholar 

  30. Liu WT, Mirzabekov AD, Stalh DA (2001) Optimization of an oligonucleotide microchip for microbial identification studies: a non-equilibrium dissociation approach. Environ Microbiol 3:619

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank S. Conti, MD, G. Altman MD, D. Altman MD, and N. Sotereanos, MD, Orthopedic Department, Allegheny General Hospital, Pittsburgh, PA, for providing the samples; S. Kathju, MD, PhD, University of Pittsburgh School of Medicine, Pittsburgh, PA and from the Center for Genomic Sciences, Allegheny-Singer Research Institute, Pittsburgh, PA; G.D. Ehrlich, PhD, C.J. Post, MD, PhD, and J.W. Costerton, PhD, for protocol development and provision of resources; and Mary O’Toole for her help in the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Stoodley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Nistico, L., Hall-Stoodley, L., Stoodley, P. (2014). Imaging Bacteria and Biofilms on Hardware and Periprosthetic Tissue in Orthopedic Infections. In: Donelli, G. (eds) Microbial Biofilms. Methods in Molecular Biology, vol 1147. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0467-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0467-9_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0466-2

  • Online ISBN: 978-1-4939-0467-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics