Skip to main content

Assessment of Toxicity of Nanoparticles Using Insects as Biological Models

  • Protocol
  • First Online:
Nanoparticles in Biology and Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2118))

Abstract

Nanomaterials have become increasingly important in medicine, manufacturing, and consumer products. A fundamental understanding of the effects of nanoparticles (NPs) and their interactions with biomolecules and organismal systems has yet to be achieved. In this chapter, we firstly provide a brief review of the interactions between nanoparticles and biological systems. We then provide an example by describing a novel method to assess the effects of NPs on biological systems, using insects as a model. Nanoparticles were injected into the central nervous system of the discoid cockroach (Blaberus discoidalis). It was found that insects became hyperactive compared to negative control (water injections). Our method could provide a generic method of assessing nanoparticles toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lewis LN (1993) Chemical catalysis by colloids and clusters. Chem Rev 93:2693–2730

    Article  CAS  Google Scholar 

  2. Alivisatos AP (1996) Semiconductor clusters, Nanocrystals, and quantum dots. Science 271:933–937

    Article  CAS  Google Scholar 

  3. Henglein A (1989) Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev 89:1861–1873

    Article  CAS  Google Scholar 

  4. Taton T, Mirkin C, Letsinger R (2000) Scanometric DNA array detection with nanoparticle probes. Science 289:1757

    Article  CAS  Google Scholar 

  5. Cao Y, Jin R, Mirkin C (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297:1536

    Article  CAS  Google Scholar 

  6. Sandhu K, McIntosh C, Simard J, Smith S, Rotello V (2002) Gold nanoparticle-mediated transfection of mammalian cells. Bioconjug Chem 13:3–6

    Article  CAS  Google Scholar 

  7. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562

    Article  CAS  Google Scholar 

  8. Loh XJ, Lee T-C, Dou Q, Deen GR (2016) Utilising inorganic nanocarriers for gene delivery. Biomater Sci 4:70–86

    Article  CAS  Google Scholar 

  9. Alkahtani M, Chen Y, Pedraza JJ, González JM, Parkinson DY, Hemmer PR, Liang H (2017) High resolution fluorescence bio-imaging upconversion nanoparticles in insects. Opt Express 25:1030–1039

    Article  CAS  Google Scholar 

  10. Chen Y, Sanchez C, Yue Y, González JM, Parkinson DY, Liang H (2016) Observation of two-dimensional yttrium oxide nanoparticles in mealworm beetles (Tenebrio molitor). J Synchrotron Radiat 23:1197–1201

    Article  CAS  Google Scholar 

  11. Chen Y, Sanchez C, Yue Y, de Almeida M, González JM, Parkinson DY, Liang H (2016) Observation of yttrium oxide nanoparticles in cabbage (Brassica oleracea) through dual energy K-edge subtraction imaging. J Nanobiotechnol 14:23

    Article  Google Scholar 

  12. Rocha A, Zhou Y, Kundu S, González JM, BradleighVinson S, Liang H (2011) In vivo observation of gold nanoparticles in the central nervous system of Blaberus discoidalis. J Nanobiotechnol 9:5

    Article  CAS  Google Scholar 

  13. Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5:709–711

    Article  CAS  Google Scholar 

  14. Menjoge AR, Kannan RM, Tomalia DA (2010) Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov Today 15:171–185

    Article  CAS  Google Scholar 

  15. Ashcroft JM, Tsyboulski DA, Hartman KB, Zakharian TY, Marks JW, Weisman RB, Rosenblum MG, Wilson LJ (2006) Fullerene (C60) immunoconjugates: interaction of water-soluble C60 derivatives with the murine anti-gp240 melanoma antibody. Chem Commun 28:3004–3006

    Article  Google Scholar 

  16. Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9:674–679

    Article  CAS  Google Scholar 

  17. Hong G, Diao S, Antaris AL, Dai H (2015) Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem Rev 115:10816–10906

    Article  CAS  Google Scholar 

  18. Cho K, Wang X, Nie S, Chen ZG, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14:1310

    Article  CAS  Google Scholar 

  19. Pérez-Herrero E, Fernández-Medarde A (2015) Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 93:52–79

    Article  Google Scholar 

  20. Bhavane R, Karathanasis E, Annapragada AV (2007) Triggered release of ciprofloxacin from nanostructured agglomerated vesicles. Int J Nanomedicine 2:407

    Article  CAS  Google Scholar 

  21. Choi UB, Strop P, Vrljic M, Chu S, Brunger AT, Weninger KR (2010) Single-molecule FRET-derived model of the synaptotagmin 1-SNARE fusion complex. Nat Struct Mol Biol 17:318–324

    Article  CAS  Google Scholar 

  22. Du Y, Guo S (2016) Chemically doped fluorescent carbon and graphene quantum dots for bioimaging, sensor, catalytic and photoelectronic applications. Nanoscale 8:2532–2543

    Article  CAS  Google Scholar 

  23. Xu S, Li D, Wu P (2015) One-pot, facile, and versatile synthesis of monolayer MoS2/WS2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction. Adv Funct Mater 25:1127–1136

    Article  CAS  Google Scholar 

  24. Zebibula A, Alifu N, Xia L, Sun C, Yu X, Xue D, Liu L, Li G, Qian J (2018) Ultrastable and biocompatible NIR-II quantum dots for functional bioimaging. Adv Funct Mater 28:1703451

    Article  Google Scholar 

  25. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  CAS  Google Scholar 

  26. Ereath Beeran A, Fernandez FB, Varma PH (2018) Self-controlled hyperthermia & MRI contrast enhancement via iron oxide embedded hydroxyapatite superparamagnetic particles for theranostic application. ACS Biomater Sci Eng 5:106–113

    Article  Google Scholar 

  27. Chiu C-W, Sanchez C, Zhou Y, González JM, Harlow M, Vinson SB, Liang H (2012) In vivo neural stimulation for locomotion control of cockroaches. Trends Entomol 8:66–73

    Google Scholar 

  28. Kirschvink J, Padmanabha S, Boyce C, Oglesby J (1997) Measurement of the threshold sensitivity of honeybees to weak, extremely low-frequency magnetic fields. J Exp Biol 200:1363

    CAS  PubMed  Google Scholar 

  29. Kirschvink JL, Kirschvink AK (1991) Is geomagnetic sensitivity real? Replication of the Walker-Bitterman magnetic conditioning experiment in honey bees. Am Zool 31:169

    Article  Google Scholar 

  30. Walker MM, Bitterman M (1989) Short communication honeybees can be trained to respond to very small changes in geomagnetic field intensity. J Exp Biol 145:489

    Google Scholar 

  31. Phillips J, Sayeed O (1993) Wavelength-dependent effects of light on magnetic compass orientation in Drosophila melanogaster. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 172:303–308

    Article  CAS  Google Scholar 

  32. Vácha M (2006) Laboratory behavioural assay of insect magnetoreception: magnetosensitivity of Periplaneta americana. J Exp Biol 209:3882

    Article  Google Scholar 

  33. Vácha M, Puzová T, Kvícalová M (2009) Radio frequency magnetic fields disrupt magnetoreception in American cockroach. J Exp Biol 212:3473

    Article  Google Scholar 

  34. Wajnberg E, Acosta-Avalos D, Alves OC, de Oliveira JF, Srygley RB, Esquivel D (2010) Magnetoreception in eusocial insects: an update. J R Soc Interface 7:S207

    Article  CAS  Google Scholar 

  35. Abraçado L, Esquivel D, Wajnberg E (2008) Oriented magnetic material in head and antennae of Solenopsis interrupta ant. J Magn Magn Mater 320:e204–e206

    Article  Google Scholar 

  36. De Oliveira JF, Wajnberg E, de Souza Esquivel DM, Weinkauf S, Winklhofer M, Hanzlik M (2010) Ant antennae: are they sites for magnetoreception? J R Soc Interface 7:143

    Article  Google Scholar 

Download references

Acknowledgments

The manuscript was edited by Mikhail Soloviev. This work was partially sponsored by the National Science Foundation (0515930), Texas Engineering Experimental Station, and the Texas A&M University. Assistance provided by Drs. Brad Vinson, Jorge Gonzelez, and Subrata Kundu is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhou, Y., Chen, Y., Rocha, A., Sanchez, C.J., Liang, H. (2020). Assessment of Toxicity of Nanoparticles Using Insects as Biological Models. In: Ferrari, E., Soloviev, M. (eds) Nanoparticles in Biology and Medicine. Methods in Molecular Biology, vol 2118. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0319-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0319-2_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0318-5

  • Online ISBN: 978-1-0716-0319-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics