1 Introduction

Throughout the paper, unless otherwise is stated, we assume that \(\mathbb{H}_{1}\) and \(\mathbb{H}_{2}\) are real Hilbert spaces endowed with inner products and induced norms denoted by \(\langle\cdot, \cdot \rangle\) and \(\| \cdot\|\), respectively, whereas \(\mathbb{H}\) refers to any of these spaces. We write \(x^{k} \to x\) or \(x^{k} \rightharpoonup x\) iff \(x^{k}\) converges strongly or weakly to x, respectively, as \(k \to \infty\). Let C, Q be nonempty closed convex subsets in \(\mathbb{H}_{1}\), \(\mathbb {H}_{2}\), respectively, and \(A: \mathbb{H}_{1} \to \mathbb{H}_{2}\) be a bounded linear operator. The split feasible problem (SFP) in the sense of Censor and Elfving [1] is to find \(x^{*} \in C\) such that \(Ax^{*} \in Q\). It turns out that SFP provides a unified framework for the study of many significant real-world problems such as in signal processing, medical image reconstruction, intensity-modulated radiation therapy, et cetera; see, for example, [25]. To find a solution of SFP in finite-dimensional Hilbert spaces, a basic scheme proposed by Byrne [6], called the CQ-algorithm, is defined as follows:

$$x^{k+1} = P_{C}\bigl(x^{k} + \gamma A^{T}(P_{Q} - I) Ax^{k}\bigr), $$

where I is the identity mapping, and \(P_{C}\) is projection mapping onto C. Xu [7] investigated the SFP setting in infinite-dimensional Hilbert spaces. In this case, the CQ-algorithm becomes

$$x^{k+1} = P_{C}\bigl(x^{k} + \gamma A^{*}(P_{Q} - I) Ax^{k}\bigr), $$

where \(A^{*}\) is the adjoint operator of A.

The split feasibility problem when C or Q are fixed points of mappings or common fixed points of mappings and solutions of variational inequality problems was considered in some recent research papers; see, for instance, [815]. Recently, Moudafi [16] (see also [1720]) considered the split equilibrium problems (SEP), more precisely:

Let \(f : C \times C \to\mathbb{R}\), \(g : Q \times Q \to\mathbb{R}\) be equilibrium bifunctions, that is, \(f(x, x) = g(u, u) = 0\) for all \(x \in C\) and \(u \in Q\). The split equilibrium problem takes the form

$$ \text{Find } x^{*} \in C \text{ such that } x^{*} \in\operatorname{Sol}(C, f) \text{ and }Ax^{*} \in\operatorname{Sol}(Q, g), $$

where \(\operatorname{Sol}(C, f)\) is the solution set of the following equilibrium problem (\(\operatorname{EP}(C, f)\)):

$$ \text{Find } \bar{x} \in C \text{ such that } f(\bar{x}, y) \geq0, \forall y \in C, $$

and \(\operatorname{Sol}(Q, g)\) is the solution set of the equilibrium problem \(\operatorname{EP}(Q, g)\). See [21, 22] for more detail on equilibrium problems.

For obtaining a solution of SEP, He [23] introduced an iterative method, which generates a sequence \(\{x^{k}\}\) by

$$ \textstyle\begin{cases} x^{0} \in C, \{r_{k}\} \subset(0, +\infty), \quad \mu> 0, \\ f(y^{k}, y) + \frac{1}{r_{k}} \langle y - y^{k}, y^{k} - x^{k} \rangle\geq0,\quad \forall y \in C, \\ g(u^{k}, v) + \frac{1}{r_{k}} \langle v - u^{k}, u^{k} - Ay^{k} \rangle\geq0,\quad \forall v \in Q, \\ x^{k+1} = P_{C}(y^{k} + \mu A^{*}(u^{k} - Ay^{k})), \quad \forall k \geq0. \end{cases} $$

Under certain conditions on bifunctions and parameters, the author shows that \(\{x^{k}\}\), \(\{y^{k}\}\) weakly converges to a solution of SEP, provided that f and g are monotone on C and Q, respectively.

On the other hand, many researchers have been proposed numerical algorithms for finding a common element of the set of solutions of monotone equilibrium problems and the set of fixed points of nonexpansive mappings; see, for example, [2426] and the references therein.

This paper focuses mainly on a split equilibrium problem and nonexpansive mapping involving pseudomonotone and monotone equilibrium bifunctions in real Hilbert spaces. In detail, let \(f : C \times C \to \mathbb{R}\) be a pseudomonotone bifunction with respect to its solution set, \(g : Q \times Q \to\mathbb{R}\) be a monotone bifunction, and \(S: C \to C\) and \(T: Q \to Q\) be nonexpansive mappings. The problem considered in this paper can be stated as follows (\(\operatorname{SEPNM}(C, Q, A, f, g, S, T)\) or SEPNM for short):

$$ \text{Find } x^{*} \in C \text{ such that } x^{*} \in\operatorname {Sol}(C, f) \cap\operatorname{Fix}(S) \text{ and } Ax^{*} \in\operatorname{Sol}(Q, g) \cap\operatorname{Fix}(T), $$

where \(\operatorname{Fix}(S)\) and \(\operatorname{Fix}(T)\) are the fixed points of the mappings S and T, respectively.

It should be noticed that, under the monotonicity assumption on f and g, the solution sets \(\operatorname{Sol}(C, f)\) and \(\operatorname{Sol}(C, g)\) of the equilibrium problems \(\operatorname{EP}(C, f)\) and \(\operatorname{EP}(Q, g)\) are closed convex sets whenever f and g are lower semicontinuous and convex with respect to the second variables. In addition, the nonexpansiveness assumption of S and T also implies that \(\operatorname{Fix}(S)\) and \(\operatorname{Fix}(T)\) are closed convex sets. Hence, \(\operatorname{Sol}(C, f) \cap\operatorname{Fix}(S)\) and \(\operatorname {Sol}(Q, g) \cap\operatorname{Fix}(T)\) are closed convex sets. However, the main difficulty is that, even if these sets are convex, they are not given explicitly as in a standard mathematical programming problem, and therefore the projection onto those sets cannot be computed, and consequently, available methods (see, e.g., [2, 27, 28] and the references therein) cannot be applied for solving SEPNM directly.

In this paper, we first propose a weak convergence algorithm for solving SEPNM by using a combination of the extragradient method with Armijo linesearch type rule for an equilibrium problem [29] (see also [3032] for more detail on extragradient algorithms) and the Mann method [33] (see also [34, 35]) for a fixed point problem. We then combine this algorithm with hybrid cutting technique [36] (see also [37]) to get a strong convergence algorithm for SEPNM.

The paper is organized as follows. The next section presents some preliminary results. A weak convergence algorithm and its special case are presented in Section 3. In the last section, we combine the method presented in Section 3 with the hybrid projection method for obtaining a strong convergence algorithm for SEPNM.

2 Preliminaries

Let \(\mathbb{H}\) be a real Hilbert space, and C a nonempty closed convex subset of \(\mathbb{H}\). By \(P_{C}\) we denote the metric projection operator onto C, that is,

$$ P_{C}(x) \in C\mbox{:}\quad \bigl\Vert x - P_{C}(x)\bigr\Vert \leq \Vert x - y \Vert , \quad \forall y \in C. $$

The following well-known results will be used in the sequel.

Lemma 1

Suppose that C is a nonempty closed convex subset in \(\mathbb{H}\). Then \(P_{C}\) has the following properties:

  1. (a)

    \(P_{C}(x)\) is singleton and well defined for every x;

  2. (b)

    \(z=P_{C}(x)\) if and only if \(\langle x-z, y-z\rangle\leq0\), \(\forall y\in C\);

  3. (c)

    \(\Vert P_{C}(x)-P_{C}(y) \Vert^{2} \leq\langle P_{C}(x) - P_{C}(y), x-y \rangle\), \(\forall x, y \in\mathbb{H}\);

  4. (d)

    \(\Vert P_{C}(x)-P_{C}(y)\Vert^{2} \leq\Vert x-y \Vert^{2} - \Vert x-P_{C}(x) - y + P_{C}(y) \Vert^{2}\), \(\forall x, y \in\mathbb{H}\).

Lemma 2

Let \(\mathbb{H}\) be a real Hilbert space. Then, for all \(x, y\in\mathbb {H}\) and \(\alpha\in[0, 1]\), we have

$$\bigl\Vert \alpha x + (1-\alpha)y \bigr\Vert ^{2} = \alpha \Vert x \Vert ^{2}+ (1-\alpha ) \Vert y \Vert ^{2}-\alpha(1- \alpha)\Vert x-y\Vert ^{2}. $$

Lemma 3

(Opial’s condition)

For any sequence \(\{x^{k}\}\subset\mathbb{H}\) with \(x^{k}\rightharpoonup x\), we have the inequality

$$\liminf_{k\rightarrow +\infty}\bigl\Vert x^{k}-x \bigr\Vert < \liminf_{k \rightarrow +\infty} \bigl\Vert x^{k}-y \bigr\Vert $$

for all \(y\in\mathbb{H}\) such that \(y \neq x\).

Definition 1

We say that an operator \(T: \mathbb{H} \to\mathbb{H}\) is demiclosed at 0 if, for any sequence \(\{x^{k}\}\) such that \(x^{k} \rightharpoonup x\) and \(Tx^{k} \to0\) as \(k \to\infty\), we have \(Tx = 0\).

It is well known that, for a nonexpansive operator \(T: \mathbb{H} \to \mathbb{H}\), the operator \(I - T\) is demiclosed at 0; see [38], Lemma 2.

Now, we assume that the equilibrium bifunctions \(g : Q \times Q \to\mathbb {R}\) and \(f: C \times C \to\mathbb{R}\) satisfy the following assumptions, respectively.

Assumption A

(A1):

g is monotone on Q, that is, \(g(u, v) + g(v, u) \leq 0\) for all \(u, v \in Q\);

(A2):

\(g(u, \cdot)\) is convex and lower semicontinuous on Q for each \(u \in Q\);

(A3):

for all \(u, v, w \in Q\),

$$\limsup_{\lambda\downarrow0}g\bigl(\lambda w+(1-\lambda)u, v\bigr)\leq g(u, v). $$

Assumption B

(B1):

f is pseudomonotone on C, that is, if \(f(x, y)\geq 0\) implies \(f(y, x)\leq0\) for all \(x, y\in C\);

(B2):

\(f(x, \cdot)\) is convex and subdifferentiable on C for all \(x\in C\);

(B3):

f is jointly weakly continuous on \(C\times C\) in the sense that, if \(x, y\in C\) and \(\{x^{k}\}, \{y^{k}\}\subset C\) converge weakly to x and y, respectively, then \(f(x^{k}, y^{k}) \to f(x, y)\) as \(k \to+\infty\).

Let φ be an equilibrium bifunction defined on \(C \times C\). For \(x, y \in C\), we denote by \(\partial_{2}\varphi(x, y)\) the subgradient of the convex function \(\varphi(x, \cdot)\) at y, that is,

$$\partial_{2} \varphi(x, y) := \bigl\{ \hat{\xi}\in\mathbb{H} : \varphi(x, z) \geq\varphi(x, y) + \langle\hat{\xi}, z - y \rangle, \forall z \in C \bigr\} . $$

In particular,

$$\partial_{2} \varphi(x , x) = \bigl\{ \hat{\xi}\in\mathbb{H} : \varphi(x, z) \geq \langle\hat{\xi}, z - x \rangle, \forall z \in C \bigr\} . $$

Let Δ be an open convex set containing C. The next lemma can be considered as an infinite-dimensional version of Theorem 24.5 in [39].

Lemma 4

([40], Proposition 4.3)

Let \(\varphi: \varDelta \times \varDelta \to\mathbb{R}\) be an equilibrium bifunction satisfying conditions (A1) on Δ and (A2) on C. Let \(\bar{x}, \bar{y} \in \varDelta \), and let \(\{x^{k}\}\), \(\{y^{k}\}\) be two sequences in Δ converging weakly to , ȳ, respectively. Then, for any \(\varepsilon > 0\), there exist \(\eta>0\) and \(k_{\varepsilon } \in\mathbb{N}\) such that

$$\partial_{2} \varphi\bigl(x^{k}, y^{k}\bigr) \subset\partial_{2}\varphi(\bar{x}, \bar {y}) + \frac{\varepsilon }{\eta}B $$

for every \(k \geq k_{\varepsilon }\), where B denotes the closed unit ball in \(\mathbb{H}\).

Lemma 5

Let the equilibrium bifunction φ satisfy assumptions (A1) on Δ and (A2) on C, and \(\{x^{k} \} \subset C \), \(0 < \underline{\rho} \leq\bar{\rho} \), \(\{\rho_{k}\} \subset[\underline{\rho} , \bar{\rho}] \). Consider the sequence \(\{ y^{k}\}\) defined as

$$y^{k} = \arg\min \biggl\{ \varphi\bigl(x^{k}, y\bigr) + \frac{1}{2\rho_{k}} \bigl\Vert y-x^{k}\bigr\Vert ^{2}: y\in C \biggr\} . $$

If \(\{x^{k} \}\) is bounded, then \(\{y^{k}\}\) is also bounded.

Proof

First, we show that if \(\{x^{k} \}\) converges weakly to \(x^{*}\), then \(\{ y^{k}\}\) is bounded. Indeed,

$$y^{k} = \operatorname{arg}\min \biggl\{ \varphi\bigl(x^{k}, y\bigr) + \frac{1}{2\rho_{k}} \bigl\Vert y-x^{k}\bigr\Vert ^{2}: y\in C \biggr\} $$

and

$$\varphi\bigl(x^{k}, x^{k}\bigr) + \frac{1}{2\rho_{k}} \bigl\Vert x^{k}-x^{k}\bigr\Vert ^{2} = 0. $$

Therefore,

$$\varphi\bigl(x^{k}, y^{k}\bigr) + \frac{1}{2\rho_{k}} \bigl\Vert y^{k}-x^{k}\bigr\Vert ^{2} \leq0,\quad \forall k. $$

In addition, for all \(\hat{\xi}^{k} \in\partial_{2}\varphi(x^{k}, x^{k})\), we have

$$\varphi\bigl(x^{k}, y^{k}\bigr) + \frac{1}{2\rho_{k}} \bigl\Vert y^{k}-x^{k}\bigr\Vert ^{2} \geq\bigl\langle \hat{\xi}^{k}, y^{k} - x^{k} \bigr\rangle + \frac{1}{2\rho_{k}} \bigl\Vert y^{k} - x^{k}\bigr\Vert ^{2}. $$

This implies

$$-\bigl\Vert \hat{\xi}^{k}\bigr\Vert \bigl\Vert y^{k} - x^{k} \bigr\Vert + \frac{1}{2\rho_{k}} \bigl\Vert y^{k} - x^{k}\bigr\Vert ^{2} \leq0. $$

Hence,

$$\bigl\Vert y^{k} - x^{k}\bigr\Vert \leq2 \rho_{k} \bigl\Vert \hat{\xi}^{k}\bigr\Vert , \quad \forall k. $$

Because \(\{\rho_{k}\}\) is bounded, \(\{x^{k}\}\) converges weakly to \(x^{*}\) and \(\hat{\xi}^{k} \in\partial_{2}\varphi(x^{k}, x^{k})\). By Lemma 4 the sequence \(\{\hat{\xi}^{k}\}\) is bounded; combining this with the boundedness of \(\{x^{k}\}\), we get that \(\{y^{k}\}\) is also bounded.

Now let us prove Lemma 5. Suppose that \(\{y^{k}\}\) is unbounded, that is, there exists a subsequence \(\{y^{k_{i}}\} \subseteq \{y^{k}\}\) such that \(\lim_{i \to\infty}\|y^{k_{i}}\| = + \infty\). By the boundedness of \(\{x^{k}\}\) this implies that \(\{x^{k_{i}}\}\) is also bounded, and without loss of generality, we may assume that \(\{x^{k_{i}}\} \) converges weakly to some \(x^{*}\). By the same argument as before, we get that \(\{y^{k_{i}}\}\) is bounded, a contradiction. Therefore, \(\{y^{k}\}\) is bounded. □

The following lemmas are well known in the theory of monotone equilibrium problems.

Lemma 6

([21])

Let g satisfy Assumption  A. Then, for all \(\alpha>0\) and \(u \in \mathbb{H}\), there exists \(w \in Q\) such that

$$g(w, v)+ \frac{1}{\alpha}\langle v-w, w-u\rangle\geq0,\quad \forall v \in Q. $$

Lemma 7

([41])

Under the assumptions of Lemma  6, the mapping \(T_{\alpha}^{g}\) defined on \(\mathbb{H}\) as

$$ T_{\alpha}^{g}(u)= \biggl\{ w\in Q: g(w, v)+ \frac{1}{\alpha}\langle v-w, w-u\rangle\geq0, \forall v\in Q \biggr\} $$

has following properties:

  1. (i)

    \(T_{\alpha}^{g}\) is single-valued;

  2. (ii)

    \(T_{\alpha}^{g}\) is firmly nonexpansive, that is, for any \(u, v\in\mathbb{H}\),

    $$\bigl\Vert T_{\alpha}^{g}(u)-T_{\alpha}^{g}(v) \bigr\Vert ^{2}\leq\bigl\langle T_{\alpha}^{g}(u)-T_{\alpha}^{g}(v), u-v\bigr\rangle ; $$
  3. (iii)

    \(\operatorname{Fix}(T_{\alpha}^{g}) = \operatorname{Sol}(Q, g)\);

  4. (iv)

    \(\operatorname{Sol}(Q, g)\) is closed and convex.

Lemma 8

([23])

Under the assumptions of Lemma  7, for \(\alpha, \beta>0\) and \(u, v\in\mathbb{H}\), we have

$$\bigl\Vert T_{\alpha}^{g}(u)-T_{\beta}^{g}(v) \bigr\Vert \leq \Vert v-u\Vert + \frac{|\beta -\alpha|}{\beta}\bigl\Vert T_{\beta}^{g}(v)-v\bigr\Vert . $$

3 A weak convergence algorithm

Algorithm 1

  • Initialization. Pick \(x^{0} \in C\) and choose the parameters \(\beta, \eta, \theta\in(0, 1)\), \(0 < \underline{\rho} \leq\bar{\rho}\), \(\{ \rho_{k} \} \subset[\underline{\rho}, \bar{\rho }]\), \(0 < \underline{\gamma} \leq\bar{\gamma} < 2\), \(\{ \gamma_{k} \} \subset[\underline{\gamma}, \bar{\gamma} ] \), \(0 < \alpha\), \(\{\alpha _{k}\} \subset [\alpha, +\infty)\), \(\mu\in(0, \frac{1}{\|A\|})\).

  • Iteration k (\(k = 0, 1, 2, \ldots \)). Having \(x^{k}\), do the following steps:

    1. Step 1.

      Solve the strongly convex program

      $$CP\bigl(x^{k}\bigr)\quad \min \biggl\{ f\bigl(x^{k}, y\bigr) + \frac{1}{2\rho_{k}} \bigl\Vert y-x^{k}\bigr\Vert ^{2}: y \in C \biggr\} $$

      to obtain its unique solution \(y^{k}\).

      If \(y^{k} = x^{k}\), then set \(u^{k} = x^{k}\) and go to Step 4. Otherwise, go to Step 2.

    2. Step 2.

      (Armijo linesearch rule) Find \(m_{k}\) as the smallest positive integer number m such that

      $$ \textstyle\begin{cases} z^{k,m} = (1 - \eta^{m})x^{k} + \eta^{m} y^{m}, \\ f(z^{k,m}, x^{k}) - f(z^{k,m}, y^{k}) \geq\frac{\theta}{2 \rho_{k}}\|x^{k} - y^{k}\|^{2}. \end{cases} $$
      (3.1)

      Set \(\eta_{k} = \eta^{m_{k}}\), \(z^{k} = z^{k, m_{k}}\).

    3. Step 3.

      Select \(\xi^{k} \in\partial_{2}f(z^{k}, x^{k})\) and compute \(\sigma_{k} = \frac{f(z^{k}, x^{k})}{\|\xi^{k}\|^{2}}\), \(u^{k} = P_{C}(x^{k} - \gamma_{k}\sigma_{k}\xi^{k})\).

    4. Step 4.
      $$ \textstyle\begin{cases} v^{k}=(1-\beta)u^{k}+\beta Su^{k}, \\ w^{k}=T_{\alpha_{k}}^{g}Av^{k}. \end{cases} $$
    5. Step 5.

      Take \(x^{k+1}=P_{C}(v^{k}+\mu A^{*}(Tw^{k}-Av^{k}))\) and go to iteration k with k replaced by \(k+1\).

Lemma 9

Suppose that \(p \in\operatorname{Sol}(C, f)\), \(f(x, \cdot)\) is convex and subdifferentiable on C for all \(x \in C\) and that f is pseudomonotone on C. Then, we have:

  1. (a)

    The Armijo linesearch rule (3.1) is well defined;

  2. (b)

    \(f(z^{k}, x^{k}) > 0\);

  3. (c)

    \(0 \notin\partial_{2}f(z^{k}, x^{k})\);

  4. (d)
    $$ \bigl\Vert u^{k} - p\bigr\Vert \leq\bigl\Vert x^{k} - p\bigr\Vert ^{2} - \gamma_{k}( 2 - \gamma_{k}) \bigl(\sigma_{k}\bigl\Vert \xi ^{k} \bigr\Vert \bigr)^{2}. $$

Proof

The proof of Lemma 9 when \(\mathbb{H}_{1}\) is a finite-dimensional space can be found, for example, in [29]. When its dimension is infinite, it can be done in the same way. So we omit it. □

Theorem 1

Let C and Q be two nonempty closed convex subsets in \(\mathbb{H}_{1}\) and \(\mathbb{H}_{2}\), respectively. Let \(S: C \to C\); \(T: Q \to Q\) be nonexpansive mappings, and let bifunctions g and f satisfy Assumptions A and B, respectively. Let \(A: \mathbb{H}_{1} \to\mathbb {H}_{2}\) be a bounded linear operator with its adjoint \(A^{*}\). If \(\varOmega = \{x^{*} \in\operatorname{Sol}(C, f) \cap\operatorname{Fix}(S): Ax^{*} \in\operatorname{Fix}(Q, g) \cap\operatorname{Fix}(T) \} \neq \emptyset\), then the sequences \(\{x^{k}\}\), \(\{u^{k}\}\), \(\{v^{k}\}\) converge weakly to an element \(p \in \varOmega \), and \(\{w^{k}\}\) converges weakly to \(Ap \in\operatorname{Sol}(Q, g) \cap\operatorname{Fix}(T)\).

Proof

Let \(x^{*} \in \varOmega \). Then \(x^{*} \in\operatorname{Sol}(C, f) \cap \operatorname{Fix}(S)\) and \(Ax^{*} \in\operatorname{Sol}(Q, g) \cap \operatorname{Fix}(T)\).

From Lemma 9(d) we have

$$\begin{aligned} \bigl\Vert u^{k}-x^{*}\bigr\Vert ^{2} & \leq\bigl\Vert x^{k}-x^{*}\bigr\Vert ^{2} - \gamma_{k}( 2 - \gamma _{k}) \bigl(\sigma_{k}\bigl\| \xi^{k}\bigr\| \bigr)^{2} \\ & \leq\bigl\Vert x^{k}-x^{*}\bigr\Vert ^{2}. \end{aligned}$$

By Step 4 we get

$$\begin{aligned} \bigl\Vert v^{k}-x^{*}\bigr\Vert &=\bigl\Vert (1- \beta)u^{k}+\beta Su^{k}-x^{*}\bigr\Vert \\ &=\bigl\Vert (1-\beta) \bigl(u^{k}-x^{*}\bigr)+\beta \bigl(Su^{k}-Sx^{*}\bigr)\bigr\Vert \\ &\leq(1-\beta)\bigl\Vert u^{k}-x^{*}\bigr\Vert +\beta\bigl\Vert Su^{k}-Sx^{*}\bigr\Vert \\ &\leq(1-\beta)\bigl\Vert u^{k}-x^{*}\bigr\Vert +\beta\bigl\Vert u^{k}-x^{*}\bigr\Vert \\ &=\bigl\Vert u^{k}-x^{*}\bigr\Vert . \end{aligned}$$

Thus,

$$ \bigl\Vert v^{k}-x^{*} \bigr\Vert \leq\bigl\Vert u^{k}-x^{*} \bigr\Vert \leq\bigl\Vert x^{k}-x^{*}\bigr\Vert . $$
(3.2)

Assertions (iii) and (ii) in Lemma 7 imply that

$$\begin{aligned} \bigl\Vert T_{\alpha_{k}}^{g}Av^{k}-Ax^{*}\bigr\Vert ^{2}& = \bigl\Vert T_{\alpha_{k}}^{g}Av^{k} - T_{\alpha_{k}}^{g}Ax^{*}\bigr\Vert ^{2} \\ & \leq\bigl\langle T_{\alpha_{k}}^{g}Av^{k} - T_{\alpha_{k}}^{g}Ax^{*}, Av^{k}-Ax^{*}\bigr\rangle \\ & = \bigl\langle T_{\alpha_{k}}^{g}Av^{k} - Ax^{*}, Av^{k} - Ax^{*} \bigr\rangle \\ & = \frac{1}{2} \bigl[\bigl\Vert T_{\alpha_{k}}^{g}Av^{k} - Ax^{*} \bigr\Vert ^{2} + \bigl\Vert Av^{k} - Ax^{*}\bigr\Vert ^{2} -\bigl\Vert T_{\alpha_{k}}^{g}Av^{k} - Av^{k}\bigr\Vert ^{2} \bigr]. \end{aligned}$$

Hence,

$$\bigl\Vert T_{\alpha_{k}}^{g}Av^{k} - Ax^{*} \bigr\Vert ^{2} \leq\bigl\Vert Av^{k}-Ax^{*} \bigr\Vert ^{2} - \bigl\Vert T_{\alpha_{k}}^{g}Av^{k} - Av^{k} \bigr\Vert ^{2}. $$

Because of the nonexpansiveness of the mapping T, we receive from the last inequality that

$$\begin{aligned} \bigl\Vert Tw^{k} - Ax^{*} \bigr\Vert ^{2} & = \bigl\Vert TT_{\alpha_{k}}^{g}Av^{k}-TAx^{*}\bigr\Vert ^{2} \\ &\leq\bigl\Vert T_{\alpha_{k}}^{g}Av^{k} - Ax^{*}\bigr\Vert ^{2} \\ &\leq\bigl\Vert Av^{k}-Ax^{*}\bigr\Vert ^{2}-\bigl\Vert T_{\alpha_{k}}^{g}Av^{k} - Av^{k}\bigr\Vert ^{2}. \end{aligned}$$
(3.3)

Using (3.3), we have

$$\begin{aligned} \bigl\langle A\bigl(v^{k}-x^{*}\bigr), Tw^{k} - Av^{k}\bigr\rangle = &\bigl\langle A\bigl(v^{k}-x^{*} \bigr)+Tw^{k} - Av^{k} - \bigl(Tw^{k}-Av^{k} \bigr), Tw^{k}-Av^{k}\bigr\rangle \\ =& \bigl\langle Tw^{k}-Ax^{*}, Tw^{k}-Av^{k} \bigr\rangle - \bigl\Vert Tw^{k} - Av^{k}\bigr\Vert ^{2} \\ =& \frac{1}{2} \bigl[\bigl\Vert Tw^{k}-Ax^{*}\bigr\Vert ^{2}+\bigl\Vert Tw^{k}-Av^{k}\bigr\Vert ^{2}-\bigl\Vert Av^{k}-Ax^{*}\bigr\Vert ^{2} \bigr] \\ &{}-\bigl\Vert Tw^{k}-Av^{k}\bigr\Vert ^{2} \\ = &\frac{1}{2} \bigl[\bigl(\bigl\Vert Tw^{k}-Ax^{*}\bigr\Vert ^{2}-\bigl\Vert Av^{k}-Ax^{*}\bigr\Vert ^{2}\bigr)-\bigl\Vert Tw^{k}-Av^{k}\bigr\Vert ^{2} \bigr] \\ \leq&- \frac{1}{2}\bigl\Vert T_{\alpha_{k}}^{g}Av^{k} - Av^{k}\bigr\Vert ^{2}- \frac {1}{2}\bigl\Vert Tw^{k}-Av^{k}\bigr\Vert ^{2}. \end{aligned}$$
(3.4)

By the definition of \(x^{k+1}\) we have

$$\begin{aligned} \bigl\Vert x^{k+1}-x^{*}\bigr\Vert ^{2} & = \bigl\Vert P_{C}\bigl(v^{k}+\mu A^{*}\bigl(Tw^{k}-Av^{k} \bigr)\bigr)-P_{C}\bigl(x^{*}\bigr)\bigr\Vert ^{2} \\ & \leq\bigl\Vert \bigl(v^{k}-x^{*}\bigr) + \mu A^{*} \bigl(Tw^{k}-Av^{k}\bigr)\bigr\Vert ^{2} \\ & = \bigl\Vert v^{k}-x^{*}\bigr\Vert ^{2} + \bigl\Vert \mu A^{*}\bigl(Tw^{k}-Av^{k}\bigr)\bigr\Vert ^{2} + 2\mu \bigl\langle v^{k}-x^{*}, A^{*}\bigl(Tw^{k}-Av^{k} \bigr)\bigr\rangle \\ & \leq\bigl\Vert v^{k}-x^{*}\bigr\Vert ^{2}+ \mu^{2}\bigl\Vert A^{*}\bigr\Vert ^{2}\bigl\Vert Tw^{k}-Av^{k}\bigr\Vert ^{2}+2\mu\bigl\langle A \bigl(v^{k}-x^{*}\bigr), Tw^{k}-Av^{k}\bigr\rangle . \end{aligned}$$

In combination with (3.4) and (3.2), the last inequality becomes

$$\begin{aligned} \bigl\Vert x^{k+1}-x^{*}\bigr\Vert ^{2} \leq& \bigl\Vert v^{k}-x^{*}\bigr\Vert ^{2} + \mu^{2} \bigl\Vert A^{*}\bigr\Vert ^{2}\bigl\Vert Tw^{k}-Av^{k} \bigr\Vert ^{2} \\ &{}- \mu\bigl\Vert Tw^{k}-Av^{k} \bigr\Vert ^{2}- \mu\bigl\Vert T_{\alpha_{k}}^{g}Av^{k}-Av^{k} \bigr\Vert ^{2} \\ =&\bigl\Vert v^{k}-x^{*}\bigr\Vert ^{2}-\mu\bigl(1-\mu \Vert A \Vert ^{2}\bigr)\bigl\Vert Tw^{k}-Av^{k} \bigr\Vert ^{2}- \mu\bigl\Vert w^{k}-Av^{k}\bigr\Vert ^{2} \\ \leq&\bigl\Vert x^{k}-x^{*}\bigr\Vert ^{2}-\mu\bigl(1-\mu \Vert A\Vert ^{2}\bigr)\bigl\Vert Tw^{k}-Av^{k} \bigr\Vert ^{2}-\mu\bigl\Vert w^{k}-Av^{k}\bigr\Vert ^{2}. \end{aligned}$$
(3.5)

In view of (3.2), (3.5), and \(\mu\in(0, \frac{1}{\Vert A\Vert ^{2}})\), we get

$$ \bigl\Vert x^{k+1}-x^{*}\bigr\Vert \leq\bigl\Vert v^{k}-x^{*}\bigr\Vert \leq\bigl\Vert u^{k}-x^{*}\bigr\Vert \leq\bigl\Vert x^{k}-x^{*}\bigr\Vert $$
(3.6)

and

$$ \mu\bigl(1-\mu \Vert A\Vert ^{2}\bigr)\bigl\Vert Tw^{k}-Av^{k}\bigr\Vert ^{2} + \mu\bigl\Vert w^{k}-Av^{k}\bigr\Vert ^{2}\leq\bigl\Vert x^{k}-x^{*}\bigr\Vert ^{2}-\bigl\Vert x^{k+1}-x^{*} \bigr\Vert ^{2}. $$
(3.7)

Therefore, \(\lim_{k \to+\infty} \Vert x^{k}-x^{*} \Vert\) does exist, and we get from (3.6) and (3.7) that

$$ \begin{aligned} &\lim_{k \to+\infty}\bigl\Vert x^{k}-x^{*}\bigr\Vert = \lim_{k \to+\infty}\bigl\Vert v^{k}-x^{*}\bigr\Vert = \lim_{k\to+\infty}\bigl\Vert u^{k}-x^{*}\bigr\Vert \quad \text{and} \\ &\lim_{k \to+\infty}\bigl\Vert Tw^{k}-Av^{k}\bigr\Vert =\lim_{k \to +\infty}\bigl\Vert w^{k}-Av^{k} \bigr\Vert =0. \end{aligned} $$
(3.8)

From (3.8) and the inequality

$$\bigl\Vert Tw^{k}-w^{k}\bigr\Vert \leq\bigl\Vert Tw^{k}-Av^{k}\bigr\Vert +\bigl\Vert w^{k} - Av^{k}\bigr\Vert $$

we get

$$ \lim_{k\rightarrow +\infty}\bigl\Vert Tw^{k} - w^{k}\bigr\Vert =0. $$
(3.9)

Besides, Lemma 9(d) implies

$$ \bigl\Vert u^{k} - x^{*}\bigr\Vert ^{2} \leq\bigl\Vert x^{k} - x^{*}\bigr\Vert ^{2} - \gamma_{k}(2- \gamma_{k}) \bigl(\sigma_{k}\bigl\Vert \xi^{k} \bigr\Vert \bigr)^{2}. $$

Hence,

$$\begin{aligned} \gamma_{k}(2-\gamma_{k}) \bigl(\sigma_{k}\bigl\Vert \xi^{k}\bigr\Vert \bigr)^{2} & \leq \bigl\Vert x^{k} - x^{*}\bigr\Vert ^{2} - \bigl\Vert u^{k} - x^{*}\bigr\Vert ^{2} \\ & = \bigl(\bigl\Vert x^{k} - x^{*}\bigr\Vert - \bigl\Vert u^{k} - x^{*}\bigr\Vert \bigr) \bigl(\bigl\Vert x^{k} - x^{*} \bigr\Vert + \bigl\Vert u^{k} - x^{*}\bigr\Vert \bigr). \end{aligned}$$

In view of (3.8), we get

$$ \lim_{k \to+\infty}\sigma_{k}\bigl\Vert \xi^{k}\bigr\Vert = 0. $$
(3.10)

In addition, by the definition of \(u^{k}\), \(u^{k} = P_{C}( x^{k} - \gamma _{k}\sigma_{k} \xi^{k} ) \). We have

$$\bigl\Vert u^{k}-x^{k} \bigr\Vert \leq \gamma_{k}\sigma_{k}\bigl\Vert \xi^{k} \bigr\Vert . $$

So we get from (3.10) that

$$ \lim_{k \to+\infty}\bigl\Vert u^{k} - x^{k}\bigr\Vert = 0. $$
(3.11)

Using \(v^{k}=(1-\beta)u^{k} + \beta Su^{k}\), Lemma 2, and the nonexpansiveness of S, we have

$$\begin{aligned} \bigl\Vert v^{k}-x^{*}\bigr\Vert ^{2} & = \bigl\Vert (1-\beta)u^{k}+\beta Su^{k}-x^{*}\bigr\Vert ^{2} \\ &=\bigl\Vert (1-\beta) \bigl(u^{k}-x^{*}\bigr)+\beta \bigl(Su^{k}-x^{*}\bigr)\bigr\Vert ^{2} \\ &=(1-\beta)\bigl\Vert u^{k}-x^{*}\bigr\Vert ^{2}+\beta \bigl\Vert Su^{k}-x^{*}\bigr\Vert ^{2}-\beta(1-\beta )\bigl\Vert Su^{k}-u^{k}\bigr\Vert ^{2} \\ &=(1-\beta)\bigl\Vert u^{k}-x^{*}\bigr\Vert ^{2}+\beta \bigl\Vert Su^{k}-Sx^{*}\bigr\Vert ^{2}-\beta (1-\beta)\bigl\Vert Su^{k}-u^{k}\bigr\Vert ^{2} \\ &\leq(1-\beta)\bigl\Vert u^{k}-x^{*}\bigr\Vert ^{2}+\beta \bigl\Vert u^{k}-x^{*}\bigr\Vert ^{2}-\beta (1-\beta)\bigl\Vert Su^{k}-u^{k}\bigr\Vert ^{2} \\ &=\bigl\Vert u^{k}-x^{*}\bigr\Vert ^{2}-\beta(1-\beta) \bigl\Vert Su^{k}-u^{k}\bigr\Vert ^{2}. \end{aligned}$$
(3.12)

Therefore,

$$\beta(1-\beta)\bigl\Vert Su^{k}-u^{k}\bigr\Vert ^{2}\leq\bigl\Vert u^{k}-x^{*}\bigr\Vert ^{2}- \bigl\Vert v^{k}-x^{*}\bigr\Vert ^{2}. $$

Combining the last inequality with (3.8), we obtain that

$$ \lim_{k \to+\infty}\bigl\Vert Su^{k}-u^{k} \bigr\Vert =0. $$
(3.13)

In addition,

$$\begin{aligned} \bigl\Vert v^{k}-x^{k}\bigr\Vert &\leq\bigl\Vert v^{k}-u^{k}\bigr\Vert +\bigl\Vert u^{k}-x^{k} \bigr\Vert \\ &=\alpha\bigl\Vert Su^{k}-u^{k} \bigr\Vert + \bigl\Vert u^{k}-x^{k} \bigr\Vert . \end{aligned}$$

Therefore, we get from (3.11) and (3.13) that

$$ \lim_{k\rightarrow +\infty}\bigl\Vert v^{k}-x^{k} \bigr\Vert =0. $$
(3.14)

Because \(\lim_{k \to+\infty}\Vert x^{k}-x^{*}\Vert\) exists, \(\{x^{k}\}\) is bounded. By Lemma 5, \(\{y^{k}\}\) is bounded, and consequently \(\{z^{k}\}\) is bounded. By Lemma 4, \(\{\xi^{k}\}\) is bounded. Step 3 and (3.10) yield

$$ \lim_{k \to\infty} f\bigl(z^{k}, x^{k}\bigr) = \lim_{k \to\infty} \bigl[\sigma_{k} \bigl\Vert \xi ^{k}\bigr\Vert \bigr] \bigl\Vert \xi^{k} \bigr\Vert = 0. $$
(3.15)

We have

$$\begin{aligned} 0 &= f\bigl(z^{k}, z^{k}\bigr) = f\bigl(z^{k}, (1 - \eta_{k}) x^{k} + \eta_{k} y^{k}\bigr) \\ & \leq (1 - \eta_{k})f\bigl(z^{k}, x^{k}\bigr) + \eta_{k} f\bigl(z^{k}, y^{k}\bigr), \end{aligned}$$

so, we get from (3.1) that

$$\begin{aligned} f\bigl(z^{k}, x^{k}\bigr) & \geq\eta_{k} \bigl[f \bigl(z^{k}, x^{k}\bigr) - f\bigl(z^{k}, y^{k}\bigr)\bigr] \\ &\geq \frac{\theta}{2\rho_{k}} \eta_{k} \bigl\Vert x^{k} - y^{k} \bigr\Vert ^{2}. \end{aligned}$$

Combining this with (3.15), we have

$$ \lim_{k \to\infty} \eta_{k}\bigl\Vert x^{k} - y^{k}\bigr\Vert ^{2} = 0. $$
(3.16)

Suppose that p is a weak accumulation point of \(\{x^{k}\}\), that is, there exists a subsequence \(\{x^{k_{j}}\}\) of \(\{x^{k}\}\) such that \(x^{k_{j}}\) converges weakly to \(p \in C\) as \(j \to+\infty\). Then, it follows from (3.11) and (3.14) that \(u^{k_{j}} \rightharpoonup p\), \(v^{k_{j}} \rightharpoonup p\), and \(Av^{k_{j}} \rightharpoonup Ap\).

Since \(\lim_{k \to+\infty}\Vert w^{k}-Av^{k}\Vert=0\), we deduce that \(w^{k_{j}} \rightharpoonup Ap\). Because \(\{w^{k}\} \subset Q\) and Q is closed and convex, we have that \(Ap \in Q\).

From (3.16) we get

$$ \lim_{i \to\infty} \eta_{k_{i}}\bigl\Vert x^{k_{i}} - y^{k_{i}}\bigr\Vert ^{2} = 0. $$
(3.17)

We now consider two distinct cases.

Case 1. \(\limsup_{i \to\infty}\eta_{k_{i}} > 0\).

In this case, there exist \(\bar{\eta} > 0\) and a subsequence of \(\{\eta _{k_{i}}\}\), denoted again by \(\{\eta_{k_{i}}\}\), such that, for some \(i_{0} > 0\), \(\eta_{{k}_{i}} > \bar{\eta}\) for all \(i \geq i_{0} \). Using this fact and (3.17), we have

$$ \lim_{i \to\infty}{\bigl\Vert x^{{k}_{i}}-y^{{k}_{i}} \bigr\Vert } = 0. $$
(3.18)

Recall that \(x^{k} \rightharpoonup p\), together with (3.18), implies that \(y^{k_{i}} \rightharpoonup p\) as \(i \to\infty\).

By the definition of \(y^{k_{i}}\),

$$y^{k_{i}} = \arg\min\biggl\{ f\bigl(x^{k_{i}}, y\bigr) + \frac{1}{2\rho_{k_{i}}}\bigl\Vert y-x^{k_{i}}\bigr\Vert ^{2}: y \in C\biggr\} , $$

we have

$$0 \in\partial_{2} f\bigl(x^{k_{i}}, y^{k_{i}}\bigr) + \frac{1}{\rho_{k_{i}}}\bigl(y^{k_{i}} - x^{k_{i}}\bigr) + N_{C}\bigl(y^{k_{i}}\bigr), $$

so there exists \(\hat{\xi}^{k_{i}} \in\partial_{2}f(x^{k_{i}}, y^{k_{i}})\) such that

$$\bigl\langle \hat{\xi}^{k_{i}}, y-y^{k_{i}}\bigr\rangle + \frac{1}{\rho_{k_{i}}}\bigl\langle y^{k_{i}} - x^{k_{i}} , y - y^{k_{i}} \bigr\rangle \geq0,\quad \forall y \in C. $$

Combining this with

$$f\bigl(x^{k_{i}}, y\bigr) - f\bigl(x^{k_{i}}, y^{k_{i}} \bigr) \geq\bigl\langle \hat{\xi}^{k_{i}}, y-y^{k_{i}}\bigr\rangle , \quad \forall y \in C, $$

yields

$$ f\bigl(x^{k_{i}}, y\bigr) - f\bigl(x^{k_{i}}, y^{k_{i}}\bigr) + \frac{1}{\rho_{k_{i}}}\bigl\langle y^{k_{i}} - x^{k_{i}} , y - y^{k_{i}} \bigr\rangle \geq0, \quad \forall y \in C. $$
(3.19)

Since

$$\bigl\langle y^{k_{i}} - x^{k_{i}} , y - y^{k_{i}} \bigr\rangle \leq\bigl\Vert y^{k_{i}} - x^{k_{i}} \bigr\Vert \bigl\Vert y - y^{k_{i}} \bigr\Vert , $$

from (3.19) we get that

$$ f\bigl(x^{k_{i}}, y\bigr) - f\bigl(x^{k_{i}}, y^{k_{i}}\bigr) + \frac{1}{\rho_{k_{i}}} \bigl\Vert y^{k_{i}} - x^{k_{i}} \bigr\Vert \bigl\Vert y - y^{k_{i}} \bigr\Vert \geq0. $$
(3.20)

Letting \(i \to\infty\), by the weak continuity of f and (3.18), from (3.20) we obtain in the limit that

$$f(p, y) - f(p, p) \geq0. $$

Hence,

$$f(p,y) \geq0,\quad \forall y \in C, $$

which means that p is a solution of \(\operatorname{EP}(C, f)\).

Case 2. \(\lim_{i \to\infty}{\eta_{k_{i}}} = 0\).

From the boundedness of \(\{y^{k_{i}}\}\), without loss of generality, we may assume that \(y^{k_{i}} \rightharpoonup \bar{y}\) as \(i \to\infty\).

Replacing y by \(x^{k_{i}}\) in (3.19), we get

$$ f\bigl(x^{k_{i}}, y^{k_{i}}\bigr) \leq- \frac{1}{\rho_{k_{i}}} \bigl\Vert y^{k_{i}} - x^{k_{i}} \bigr\Vert ^{2}. $$
(3.21)

On the other hand, by the Armijo linesearch rule (3.1), for \(m_{k_{i}} - 1\), we have

$$ f\bigl(z^{k_{i}, m_{k_{i}} - 1}, x^{k_{i}}\bigr) - f \bigl(z^{k_{i}, m_{k_{i}} - 1}, y^{k_{i}}\bigr) < \frac{\theta}{2\rho_{k_{i}}} \bigl\Vert y^{k_{i}}-x^{k_{i}}\bigr\Vert ^{2}. $$

Combining this with (3.21), we get

$$ f\bigl(x^{k_{i}}, y^{k_{i}}\bigr) \leq- \frac{1}{\rho_{k_{i}}} \bigl\Vert y^{k_{i}} - x^{k_{i}} \bigr\Vert ^{2} \leq\frac{2}{\theta} \bigl[f\bigl(z^{k_{i}, m_{k_{i}} - 1}, y^{k_{i}}\bigr) - f\bigl(z^{k_{i}, m_{k_{i}} - 1}, x^{k_{i}}\bigr) \bigr]. $$
(3.22)

According to the algorithm, we have \(z^{k_{i}, m_{k_{i}} - 1} = (1-\eta ^{m_{k_{i}} - 1})x^{k_{i}} + \eta^{m_{k_{i}} - 1}y^{k_{i}}\). Since \(\eta^{k_{i}, m_{k_{i}} - 1} \to0\), \(x^{k_{i}} \) converges weakly to p, and \(y^{k_{i}}\) converges weakly to ȳ, this implies that \(z^{k_{i}, m_{k_{i}} - 1} \rightharpoonup p\) as \(i \to\infty\). Beside that, \(\{\frac{1}{\rho _{k_{i}}}\|y^{k_{i}} - x^{k_{i}}\|^{2}\}\) is bounded, so without loss of generality we may assume that \(\lim_{i \to+\infty}\frac{1}{\rho _{k_{i}}}\|y^{k_{i}} - x^{k_{i}}\|^{2}\) exists. Hence, in the limit, from (3.22) we get that

$$ f(p, \bar{y}) \leq- \lim_{i \to+\infty}\frac{1}{\rho_{k_{i}}} \bigl\Vert y^{k_{i}} - x^{k_{i}}\bigr\Vert ^{2} \leq \frac{2}{\theta}f(p, \bar{y}). $$

Therefore, \(f(p, \bar{y}) = 0\) and \(\lim_{i \to+\infty}\|y^{k_{i}} - x^{k_{i}}\|^{2} = 0\). By Case 1 we get \(p \in\operatorname{Sol}(C, f)\).

Besides that, (3.13) implies that \(\|Su^{k_{j}} - u^{k_{j}}\| \to0\) as \(j \to\infty\); together with \(u^{k_{j}} \rightharpoonup p \) and the demiclosedness of \(I - S\), we get \(p \in\operatorname{Fix}(S)\).

Therefore,

$$ p \in\operatorname{Sol}(C, f) \cap\operatorname{Fix}(S). $$
(3.23)

Next, we need to show that \(Ap \in\operatorname{Sol}(Q, g) \cap \operatorname{Fix}(T)\).

Indeed, we have \(\operatorname{Sol}(Q, g)= \operatorname{Fix}(T_{\beta}^{g})\). So, if \(T_{\beta}^{g}Ap \neq Ap\), then, using Opial’s condition, we have

$$\begin{aligned} \liminf_{j \to+\infty}\bigl\Vert Av^{k_{j}}-Ap\bigr\Vert &< \liminf_{j \to+\infty }\bigl\Vert Av^{k_{j}}-T_{\beta}^{g}Ap \bigr\Vert \\ &=\liminf_{j \to+\infty}\bigl\Vert Av^{k_{j}}-w^{k_{j}}+w^{k_{j}}-T_{\beta}^{g}Ap\bigr\Vert \\ &\leq\liminf_{j \to+\infty}\bigl(\bigl\Vert Av^{k_{j}}-w^{k_{j}} \bigr\Vert +\bigl\Vert T_{\beta}^{g}Ap-w^{k_{j}}\bigr\Vert \bigr). \end{aligned}$$

So it follows from (3.8) and Lemma 8 that

$$\begin{aligned} \liminf_{j \to+\infty}\bigl\Vert Av^{k_{j}}-Ap\bigr\Vert & < \liminf_{j \to +\infty}\bigl\Vert T_{\beta}^{g}Ap-w^{k_{j}} \bigr\Vert \\ &=\liminf_{j \to+\infty}\bigl\Vert T_{\beta}^{g}Ap-T_{\alpha _{k_{j}}}^{g}Av^{k_{j}} \bigr\Vert \\ &\leq\liminf_{j \to+\infty} \biggl\{ \bigl\Vert Av^{k_{j}}-Ap \bigr\Vert + \frac{|\alpha _{k_{j}}-\beta|}{\alpha_{k_{j}}}\bigl\Vert T_{\alpha _{k_{j}}}^{g}Av^{k_{j}}-Av^{k_{j}} \bigr\Vert \biggr\} \\ &=\liminf_{j \to+\infty} \biggl\{ \bigl\Vert Av^{k_{j}}-Ap\bigr\Vert + \frac{|\alpha _{k_{j}}-\beta|}{\alpha_{k_{j}}}\bigl\Vert w^{k_{j}}-Av^{k_{j}}\bigr\Vert \biggr\} \\ &=\liminf_{j \to+\infty}\bigl\Vert Av^{k_{j}}-Ap\bigr\Vert , \end{aligned}$$

a contradiction. Thus, \(Ap \in\operatorname{Fix}(T_{\alpha}^{g}) = \operatorname{Sol}(Q, g)\).

Moreover, (3.9) shows that \(\lim_{j \to\infty} \|Tw^{k_{j}} - w^{k_{j}}\| = 0\). Combining this with \(w^{k_{j}} \rightharpoonup Ap\) and the fact that \(I - T\) is demiclosed at 0, it is immediate that \(Ap \in \operatorname{Fix}(T)\). Therefore,

$$ Ap \in\operatorname{Sol}(Q, g) \cap\operatorname{Fix}(T). $$
(3.24)

From (3.23) and (3.24) we obtain that \(p \in \varOmega \).

To complete the proof, we must show that the whole sequence \(\{x^{k}\}\) converges weakly to p. Indeed, if there exists a subsequence \(\{ x^{l_{i}}\}\) of \(\{x^{k}\}\) such that \(x^{l_{i}} \rightharpoonup q\) with \(q \neq p \), then we have \(q \in \varOmega \). By Opial’s condition this yields

$$\begin{aligned} \liminf_{i \to+\infty}\bigl\Vert x^{l_{i}} - q \bigr\Vert & < \liminf_{i \to +\infty}\bigl\Vert x^{l_{i}} - p\bigr\Vert \\ &=\liminf_{j \to+\infty}\bigl\Vert x^{k} - p \bigr\Vert \\ &= \liminf_{j \to+\infty}\bigl\Vert x^{k_{j}}-p \bigr\Vert \\ &< \liminf_{j \to+\infty}\bigl\Vert x^{k_{j}}-q \bigr\Vert \\ &=\liminf_{i \to+\infty}\bigl\Vert x^{l_{i}}-q\bigr\Vert , \end{aligned}$$

a contradiction. Hence, \(\{x^{k}\}\) converges weakly to p.

Combining this with (3.8), it is immediate that \(\{u^{k}\} \), \(\{ v^{k}\}\) also converge weakly to p and \(w^{k} \rightharpoonup Ap \in \operatorname{Sol}(Q, g) \cap\operatorname{Fix}(T)\). □

A particular case of the problem SEPNM is the split equilibrium problem SEP, that is, \(S = I_{\mathbb{H}_{1}}\) and \(T = I_{\mathbb{H}_{2}}\). In this case, we have the following linesearch algorithm for SEP.

Algorithm 2

  • Initialization. Pick \(x^{0} \in C\) and choose the parameters \(\eta, \theta\in(0, 1)\), \(0 < \underline{\rho} \leq\bar {\rho}\), \(\{ \rho_{k} \} \subset[\underline{\rho}, \bar{\rho}]\), \(0 < \underline{\gamma} \leq\bar{\gamma} < 2\), \(\{ \gamma_{k} \} \subset [\underline{\gamma}, \bar{\gamma} ] \), \(0 < \alpha\), \(\{\alpha_{k}\} \subset [\alpha, +\infty)\), \(\mu\in(0, \frac{1}{\|A\|})\).

  • Iteration k (\(k = 0, 1, 2, \ldots \)). Having \(x^{k}\), do the following steps:

    1. Step 1.

      Solve the strongly convex program

      $$CP\bigl(x^{k}\bigr)\quad \min \biggl\{ f\bigl(x^{k}, y\bigr) + \frac{1}{2\rho_{k}} \bigl\Vert y-x^{k}\bigr\Vert ^{2}: y \in C \biggr\} $$

      to obtain its unique solution \(y^{k}\).

      If \(y^{k} = x^{k}\), then set \(u^{k} = x^{k}\) and go to Step 4. Otherwise, go to Step 2.

    2. Step 2.

      (Armijo linesearch rule) Find \(m_{k}\) as the smallest positive integer number m such that

      $$ \textstyle\begin{cases} z^{k,m} = (1 - \eta^{m})x^{k} + \eta^{m} y^{m}, \\ f(z^{k,m}, x^{k}) - f(z^{k,m}, y^{k}) \geq\frac{\theta}{2 \rho_{k}}\|x^{k} - y^{k}\|^{2}. \end{cases} $$

      Set \(\eta_{k} = \eta^{m_{k}}\), \(z^{k} = z^{k, m_{k}}\).

    3. Step 3.

      Select \(\xi^{k} \in\partial_{2}f(z^{k}, x^{k})\) and compute \(\sigma_{k} = \frac{f(z^{k}, x^{k})}{\|\xi^{k}\|^{2}}\), \(u^{k} = P_{C}(x^{k} - \gamma_{k}\sigma_{k}\xi^{k})\).

    4. Step 4.

      \(w^{k}=T_{\alpha_{k}}^{g}Au^{k}\).

    5. Step 5.

      Take \(x^{k+1}=P_{C}(u^{k}+\mu A^{*}(w^{k}-Au^{k}))\) and go to iteration k with k is replaced by \(k+1\).

The following corollary is an immediate consequence of Theorem 1.

Corollary 1

Suppose that g, f are bifunctions satisfying Assumptions A and B, respectively. Let \(A: \mathbb{H}_{1} \to\mathbb{H}_{2}\) be a bounded linear operator with its adjoint \(A^{*}\). If \(\varOmega = \{x^{*} \in\operatorname{Sol}(C, f): Ax^{*} \in\operatorname {Sol}(Q, g) \} \neq\emptyset\), then the sequences \(\{x^{k}\}\) and \(\{ u^{k}\}\) converge weakly to an element \(p \in \varOmega \), and \(\{w^{k}\}\) converges weakly to \(Ap \in\operatorname{Sol}(Q, g)\).

4 A strong convergence algorithm

Algorithm 3

  • Initialization. Pick \(x^{g} \in C_{0} = C\) and choose the parameters \(\beta, \eta, \theta\in(0, 1)\), \(0 < \underline{\rho} \leq \bar{\rho} \), \(\{ \rho_{k} \} \subset[\underline{\rho} , \bar{\rho } ]\), \(0 < \underline{\gamma} \leq\bar{\gamma} < 2 \), \(\{ \gamma_{k} \} \subset[ \underline{\gamma}, \bar{\gamma}] \), \(0 < \alpha\), \(\{\alpha _{k}\} \subset [\alpha, +\infty)\), \(\mu\in(0, \frac{1}{\|A\|})\).

  • Iteration k (\(k = 0, 1, 2, \ldots \)). Having \(x^{k}\), do the following steps:

    1. Step 1.

      Solve the strongly convex program

      $$CP\bigl(x^{k}\bigr)\quad \min \biggl\{ f\bigl(x^{k}, y\bigr) + \frac{1}{2\rho_{k}} \bigl\Vert y-x^{k}\bigr\Vert ^{2}: y \in C \biggr\} $$

      to obtain its unique solution \(y^{k}\).

      If \(y^{k} = x^{k}\), then set \(u^{k} = x^{k}\) and go to Step 4. Otherwise, go to Step 2.

    2. Step 2.

      (Armijo linesearch rule) Find \(m_{k}\) as the smallest positive integer number m such that

      $$ \textstyle\begin{cases} z^{k,m} = (1 - \eta^{m})x^{k} + \eta^{m} y^{m}, \\ f(z^{k,m}, x^{k}) - f(z^{k,m}, y^{k}) \geq\frac{\theta}{2 \rho_{k}}\|x^{k} - y^{k}\|^{2}. \end{cases} $$
      (4.1)

      Set \(\eta_{k} = \eta^{m_{k}}\), \(z^{k} = z^{k, m_{k}}\).

    3. Step 3.

      Select \(\xi^{k} \in\partial_{2}f(z^{k}, x^{k})\) and compute \(\sigma_{k} = \frac{f(z^{k}, x^{k})}{\|\xi^{k}\|^{2}}\), \(u^{k} = P_{C}(x^{k} - \gamma_{k}\sigma_{k}\xi^{k})\).

    4. Step 4.
      $$ \textstyle\begin{cases} v^{k}=(1-\beta)u^{k} + \beta Su^{k}, \\ w^{k}=T_{\beta_{k}}^{g}Av^{k}. \end{cases} $$
    5. Step 5.

      \(t^{k}=P_{C}(v^{k}+\mu A^{*}(Tw^{k}-Av^{k}))\).

    6. Step 6.

      Define \(C_{k+1} = \{x \in C_{k}: \|x - t^{k}\| \leq \| x - v^{k}\| \leq\|x - x^{k}\| \}\). Compute \(x^{k+1} = P_{C_{k+1}}(x^{g})\) and go to iteration k with k is replaced by \(k+1\).

Theorem 2

Let C and Q be two nonempty closed convex subsets in \(\mathbb{H}_{1}\) and \(\mathbb{H}_{2}\), respectively. Let \(S: C \to C\); \(T: Q \to Q\) be nonexpansive mappings, and let bifunctions g and f satisfy Assumptions A and B, respectively. Let \(A: \mathbb{H}_{1} \to\mathbb {H}_{2}\) be a bounded linear operator with its adjoint \(A^{*}\). If \(\varOmega = \{x^{*} \in\operatorname{Sol}(C, f) \cap\operatorname {Fix}(S): Ax^{*} \in\operatorname{Sol}(Q, g) \cap\operatorname{Fix}(T) \} \neq\emptyset\), then the sequences \(\{x^{k}\}\), \(\{u^{k}\}\), \(\{v^{k}\}\) converge strongly to an element \(p \in \varOmega \), and \(\{w^{k}\}\) converges strongly to \(Ap \in\operatorname{Sol}(Q, g) \cap\operatorname{Fix}(T)\).

Proof

First, we observe that the linesearch rule (4.1) is well defined by Lemma 9. Let \(x^{*} \in \varOmega \). From (3.5), (3.12), and (3.2) we have

$$\begin{aligned} \bigl\Vert t^{k}-x^{*}\bigr\Vert ^{2} \leq& \bigl\Vert v^{k}-x^{*} \bigr\Vert ^{2} - \mu\bigl(1-\mu \Vert A\Vert ^{2}\bigr)\bigl\Vert Tw^{k}-Av^{k} \bigr\Vert ^{2}-\mu\bigl\Vert w^{k}-Av^{k}\bigr\Vert ^{2} \\ \leq&\bigl\Vert u^{k}-x^{*}\bigr\Vert ^{2}-\beta(1-\beta) \bigl\Vert Su^{k}-u^{k}\bigr\Vert ^{2} \\ &{}-\mu \bigl(1-\mu \Vert A\Vert ^{2}\bigr)\bigl\Vert Tw^{k}-Av^{k} \bigr\Vert ^{2}-\mu\bigl\Vert w^{k}-Av^{k}\bigr\Vert ^{2} \\ \leq&\bigl\Vert x^{k}-x^{*}\bigr\Vert ^{2}-\beta(1-\beta) \bigl\Vert Su^{k}-u^{k}\bigr\Vert ^{2} \\ &{}-\mu \bigl(1-\mu \Vert A\Vert ^{2}\bigr)\bigl\Vert Tw^{k}-Av^{k} \bigr\Vert ^{2}-\mu\bigl\Vert w^{k}-Av^{k}\bigr\Vert ^{2}. \end{aligned}$$
(4.2)

Since \(\mu\in (0, \frac{1}{\Vert A\Vert^{2}} )\), (4.2) implies that

$$ \bigl\Vert t^{k}-x^{*}\bigr\Vert \leq\bigl\Vert v^{k}-x^{*}\bigr\Vert \leq\bigl\Vert u^{k}-x^{*}\bigr\Vert \leq\bigl\Vert x^{k}-x^{*}\bigr\Vert , \quad \forall k. $$
(4.3)

Since \(x^{*} \in C_{0}\), from(4.3) we get by induction that \(x^{*} \in C_{k}\) for all \(k \in\mathbb{N}^{*}\)and, consequently, \(\varOmega \subset C_{k}\) for all k.

By setting

$$D_{k} = \bigl\{ x \in\mathbb{H}_{1}: \bigl\Vert x - t^{k} \bigr\Vert \leq\bigl\Vert x - v^{k} \bigr\Vert \leq\bigl\Vert x - x^{k} \bigr\Vert \bigr\} ,\quad k\in\mathbb{N}, $$

it is clear that \(D_{k}\) is closed and convex for all k. In addition, \(C_{0} = C\) is also closed and convex, and \(C_{k+1}=C_{k} \cap D_{k}\). Hence, \(C_{k}\) is closed and convex for all k.

From the definition of \(x^{k + 1}\) we have \(x^{k+1}\in C_{k+1}\subset C_{k}\) and \(x^{k}=P_{C_{k}}(x^{g})\), so

$$\bigl\Vert x^{k}-x^{g}\bigr\Vert \leq\bigl\Vert x^{k+1}-x^{g} \bigr\Vert \quad \text{for all } k. $$

Since \(x^{*} \in C_{k+1}\), this implies that

$$\bigl\Vert x^{k+1}-x^{g} \bigr\Vert \leq\bigl\Vert x^{*}-x^{g} \bigr\Vert . $$

Thus,

$$\bigl\Vert x^{k}-x^{g} \bigr\Vert \leq\bigl\Vert x^{k+1}-x^{g} \bigr\Vert \leq\bigl\Vert x^{*}-x^{g} \bigr\Vert ,\quad \forall k. $$

Consequently, \(\{\Vert x^{k}-x^{g}\Vert\}\) is nondecreasing and bounded, so \(\lim_{k \to+\infty}\Vert x^{k}-x^{g}\Vert\) does exist.

Combining this with (4.3), we obtain that \(\{t^{k}\}\) and \(\{v^{k}\}\) are also bounded.

For all \(m > n\), we have that \(x^{m} \in C_{m} \subset C_{n}\) and \(x^{n}=P_{C_{n}}(x^{g})\). Combining this fact with Lemma 1, we get

$$\begin{aligned} \bigl\Vert x^{m}-x^{n} \bigr\Vert ^{2} & \leq \bigl\Vert x^{m}-x^{g} \bigr\Vert ^{2}- \bigl\Vert x^{n}-x^{g}\bigr\Vert ^{2} \\ & = \bigl(\bigl\Vert x^{m}-x^{g} \bigr\Vert - \bigl\Vert x^{n}-x^{g} \bigr\Vert \bigr) \bigl(\bigl\Vert x^{m}-x^{g} \bigr\Vert + \bigl\Vert x^{n}-x^{g} \bigr\Vert \bigr). \end{aligned}$$

Since \(\lim_{k \to+\infty}\Vert x^{k}-x^{g}\Vert\) exists, this implies that \(\lim_{m,n \to\infty} \Vert x^{m}-x^{n} \Vert = 0\), i.e., \(\{x^{k}\} \) is a Cauchy sequence, so

$$ \lim_{k \to\infty}x^{k} = p. $$
(4.4)

By Step 6 we get

$$\bigl\Vert t^{k}-x^{k+1} \bigr\Vert \leq\bigl\Vert v^{k}-x^{k+1} \bigr\Vert \leq\bigl\Vert x^{k}-x^{k+1}\bigr\Vert . $$

Therefore,

$$\begin{aligned} \bigl\Vert t^{k}-x^{k}\bigr\Vert &\leq \bigl\Vert t^{k}-x^{k+1}\bigr\Vert +\bigl\Vert x^{k+1}-x^{k}\bigr\Vert \\ &\leq\bigl\Vert x^{k}-x^{k+1}\bigr\Vert +\bigl\Vert x^{k}-x^{k+1}\bigr\Vert \\ &=2\bigl\Vert x^{k}-x^{k+1}\bigr\Vert \end{aligned}$$
(4.5)

and

$$\begin{aligned} \bigl\Vert v^{k}-x^{k}\bigr\Vert &\leq \bigl\Vert v^{k}-x^{k+1}\bigr\Vert +\bigl\Vert x^{k+1}-x^{k}\bigr\Vert \\ &\leq\bigl\Vert x^{k}-x^{k+1}\bigr\Vert +\bigl\Vert x^{k}-x^{k+1}\bigr\Vert \\ &=2\bigl\Vert x^{k}-x^{k+1}\bigr\Vert . \end{aligned}$$
(4.6)

So, from (4.5), (4.6), and (4.4) we get that

$$ \lim_{k \to\infty} \bigl\Vert t^{k} - x^{k} \bigr\Vert = \lim_{k \to\infty} \bigl\Vert v^{k} - x^{k} \bigr\Vert = 0. $$
(4.7)

In view of (4.2) and (4.7), we have

$$\begin{aligned}& \beta(1-\beta)\bigl\Vert Su^{k}-u^{k}\bigr\Vert ^{2}+\mu\bigl(1-\mu \Vert A\Vert ^{2}\bigr)\bigl\Vert Tw^{k}-Av^{k}\bigr\Vert ^{2}+\mu\bigl\Vert w^{k}-Av^{k}\bigr\Vert ^{2} \\& \quad \leq\bigl\Vert x^{k}-x^{*}\bigr\Vert ^{2}-\bigl\Vert t^{k}-x^{*}\bigr\Vert ^{2} \\& \quad =\bigl(\bigl\Vert x^{k}-x^{*}\bigr\Vert +\bigl\Vert t^{k}-x^{*}\bigr\Vert \bigr) \bigl(\bigl\Vert x^{k}-x^{*} \bigr\Vert -\bigl\Vert t^{k}-x^{*}\bigr\Vert \bigr) \\& \quad \leq\bigl\Vert x^{k}-t^{k}\bigr\Vert \bigl(\bigl\Vert x^{k}-x^{*}\bigr\Vert +\bigl\Vert t^{k}-x^{*}\bigr\Vert \bigr) \to0\quad \text{as } k \to\infty. \end{aligned}$$
(4.8)

Since \(\beta\in(0, 1)\) and \(\mu\in(0, \frac{1}{\|A\|})\), we deduce from (4.8) that

$$ \begin{aligned} &\lim_{k \to+\infty}\bigl\Vert Su^{k}-u^{k}\bigr\Vert =0, \qquad \lim_{k \to+\infty }\bigl\Vert Tw^{k}-Av^{k}\bigr\Vert = 0, \quad \text{and} \\ &\lim_{k \to+\infty}\bigl\Vert w^{k}-Av^{k}\bigr\Vert =0. \end{aligned} $$
(4.9)

In addition, from the inequality

$$\bigl\Vert Tw^{k}-w^{k}\bigr\Vert \leq\bigl\Vert Tw^{k}-Av^{k}\bigr\Vert +\bigl\Vert w^{k}-Av^{k} \bigr\Vert , $$

combined with (4.9), we get

$$ \lim_{k \to+\infty}\bigl\Vert Tw^{k}-w^{k} \bigr\Vert =0. $$
(4.10)

Besides, (3.11), (4.6), and \(\lim_{k \to+\infty}x^{k}=p\) it imply

$$ \lim_{k \to+\infty}u^{k}=p,\qquad \lim _{k \to+\infty}v^{k}=p. $$
(4.11)

Since

$$\begin{aligned} \Vert Sp-p\Vert &\leq\bigl\Vert Sp-Su^{k}\bigr\Vert +\bigl\Vert Su^{k}-u^{k}\bigr\Vert +\bigl\Vert u^{k}-p\bigr\Vert \\ &\leq\bigl\Vert p-u^{k}\bigr\Vert +\bigl\Vert Su^{k}-u^{k}\bigr\Vert +\bigl\Vert u^{k}-p\bigr\Vert \\ &=2\bigl\Vert u^{k}-p\bigr\Vert +\bigl\Vert Su^{k}-u^{k} \bigr\Vert , \end{aligned}$$

from (4.9) and (4.11) we get that \(\|Sp - p\| = 0\), that is, \(p \in\operatorname{Fix}(S)\).

From (3.16) we have

$$ \lim_{k \to\infty} \eta_{k}\bigl\Vert x^{k} - y^{k}\bigr\Vert ^{2} = 0. $$
(4.12)

We now consider two distinct cases.

Case 1. \(\limsup_{k \to\infty}\eta_{k} > 0\).

Then there exist \(\bar{\eta} > 0\) and a subsequence \(\{ \eta_{k_{i}} \} \subset\{ \eta_{k} \}\) such that \(\eta_{{k}_{i}} > \bar{\eta}\) for all i. So we get from (4.12) that

$$ \lim_{i \to\infty}{\bigl\Vert x^{{k}_{i}}-y^{{k}_{i}} \bigr\Vert } = 0. $$
(4.13)

Since \(x^{k} \to p\), (4.13) implies that \(y^{k_{i}} \to p\) as \(i \to\infty\).

For each \(y \in C\), we get from (3.20) that

$$ f\bigl(x^{k_{i}}, y\bigr) - f\bigl(x^{k_{i}}, y^{k_{i}}\bigr) + \frac{1}{\rho_{k_{i}}} \bigl\Vert y^{k_{i}} - x^{k_{i}} \bigr\Vert \bigl\Vert y - y^{k_{i}} \bigr\Vert \geq0. $$
(4.14)

Letting \(i \to\infty\), by the continuity of f, since \(x^{k_{i}} \to p\) and \(y^{k_{i}} \to p\), in the limit, from (4.14) we obtain that

$$f(p,y) - f(p, p) \geq0. $$

Hence,

$$f(p,y) \geq0, \quad \forall y \in C, $$

so p is a solution of \(\operatorname{EP}(C, f)\).

Case 2. \(\lim_{k \to\infty}{\eta_{k}} = 0\).

From the boundedness of \(\{y^{k}\}\) we deduce that there exists \(\{ y^{k_{i}}\} \subset\{y^{k}\} \) such that \(y^{k_{i}} \rightharpoonup \bar {y}\) as \(i \to\infty\).

Replacing y by \(y^{k_{i}}\) in (3.19), we get

$$ f\bigl(x^{k_{i}}, y^{k_{i}}\bigr) + \frac{1}{\rho_{k_{i}}}\bigl\Vert y^{k_{i}} - x^{k_{i}} \bigr\Vert ^{2} \leq0. $$
(4.15)

In the other hand, by the Armijo linesearch rule (4.1), for \(m_{k_{i}} - 1\), there exists \(z^{k_{i}, m_{k_{i}}-1} \) such that

$$ f\bigl(z^{k_{i}, m_{k_{i}}-1}, x^{k_{i}}\bigr) - f \bigl(z^{k_{i}, m_{k_{i}}-1}, y^{k_{i}}\bigr) < \frac {\theta}{2\rho_{k_{i}}}\bigl\Vert y^{k_{i}}-x^{k_{i}}\bigr\Vert ^{2}. $$

Combining this with (4.15), we get

$$ f\bigl(z^{k_{i}, m_{k_{i}} - 1}, y^{k_{i}} \bigr) - f \bigl(z^{k_{i}, m_{k_{i}}-1}, x^{k_{i}}\bigr) > - \frac{\theta}{2\rho_{k_{i}}} \bigl\Vert y^{k_{i}}-x^{k_{i}}\bigr\Vert ^{2} \geq \frac{2}{\theta} f\bigl(x^{k_{i}}, y^{k_{i}}\bigr) . $$
(4.16)

According to the algorithm, we have \(z^{k_{i}, m_{k_{i}} - 1} = (1-\eta ^{m_{k_{i}} - 1})x^{k_{i}} + \eta^{m_{k_{i}} - 1}y^{k_{i}}\). Since \(\eta^{k_{i}, m_{k_{i}} - 1} \to0\), \(x^{k_{i}} \) converges strongly to p, and \(y^{k_{i}}\) converges weakly to ȳ, this implies that \(z^{k_{i}, m_{k_{i}} - 1} \to p\) as \(i \to\infty\). Besides that, \(\{\frac{1}{\rho _{k_{i}}}\|y^{k_{i}} - x^{k_{i}}\|^{2}\}\) is bounded, so, without loss of generality, we may assume that \(\lim_{i \to+\infty}\frac{1}{\rho _{k_{i}}}\|y^{k_{i}} - x^{k_{i}}\|^{2}\) exists. Hence, we get in the limit (4.16) that

$$ f(p, \bar{y}) \geq- 2 \lim_{i \to+\infty}\frac{1}{\rho_{k_{i}}}\bigl\Vert y^{k_{i}} - x^{k_{i}}\bigr\Vert ^{2} \geq\theta f(p, \bar{y}). $$

Therefore, \(f(p, \bar{y}) = 0\) and \(\lim_{i \to+\infty}\|y^{k_{i}} - x^{k_{i}}\|^{2} = 0\). By Case 1 it is immediate that \(p \in\operatorname{Sol}(C, f)\). So

$$ p \in\operatorname{Sol}(C, f) \cap\operatorname{Fix}(S). $$
(4.17)

We obtain from (4.11) that \(\lim_{k \to+\infty}Av^{k}=Ap\). Combining this with (4.9) yields

$$ \lim_{k\rightarrow +\infty}w^{k}=Ap. $$
(4.18)

Moreover,

$$\begin{aligned} \Vert TAp-Ap\Vert & \leq\bigl\Vert TAp-Tw^{k}\bigr\Vert + \bigl\Vert Tw^{k}-w^{k}\bigr\Vert +\bigl\Vert w^{k}-Ap\bigr\Vert \\ & \leq\bigl\Vert Ap-w^{k}\bigr\Vert + \bigl\Vert Tw^{k}-w^{k}\bigr\Vert +\bigl\Vert w^{k}-Ap \bigr\Vert \\ &=2\bigl\Vert w^{k}-Ap \bigr\Vert + \bigl\Vert Tw^{k} - w^{k}\bigr\Vert . \end{aligned}$$

In view of (4.10) and (4.18), we obtain \(\|TAp - Ap\| = 0\). Hence, \(Ap \in\operatorname{Fix}(T)\).

In addition,

$$\begin{aligned} \bigl\Vert T_{\beta}^{g}Ap - Ap \bigr\Vert & \leq\bigl\Vert T_{\beta}^{g}Ap-T_{\alpha _{k}}^{g}Av^{k} \bigr\Vert +\bigl\Vert T_{\alpha_{k}}^{g}Av^{k}-Av^{k} \bigr\Vert + \bigl\Vert Av^{k}-Ap\bigr\Vert \\ &= \bigl\Vert T_{\beta}^{g}Ap - T_{\alpha_{k}}^{g}Av^{k} \bigr\Vert + \bigl\Vert w^{k} - Av^{k}\bigr\Vert + \bigl\Vert Av^{k}-Ap\bigr\Vert \\ & \leq\bigl\Vert Av^{k}-Ap \bigr\Vert + \frac{|\alpha_{k}-\beta|}{\alpha_{k}}\bigl\Vert T_{\alpha_{k}}^{g}Av^{k} - Av^{k} \bigr\Vert + \bigl\Vert w^{k}-Av^{k}\bigr\Vert + \bigl\Vert Av^{k}-Ap\bigr\Vert \\ &=2\bigl\Vert Av^{k}-Ap \bigr\Vert + \frac{|\alpha_{k}-\beta|}{\alpha_{k}}\bigl\Vert w^{k} - Av^{k}\bigr\Vert +\bigl\Vert w^{k}-Av^{k}\bigr\Vert , \end{aligned}$$

where the last inequality comes from Lemma 8. Letting \(k \to \infty\) and recalling that \(\lim_{k \to+\infty}Av^{k}=Ap\), from (4.9) we get

$$\bigl\Vert T_{\alpha}^{g}Ap - Ap\bigr\Vert = 0. $$

Therefore, \(Ap \in\operatorname{Fix}(T_{\alpha}^{g}) = \operatorname {Sol}(Q, g)\).

Hence,

$$ Ap \in\operatorname{Sol}(Q, g) \cap\operatorname{Fix}(T). $$

Combining this with (4.17), we conclude that \(p \in \varOmega \). The proof is completed. □

When \(S=I_{\mathbb{H}_{1}}\) and \(T=I_{\mathbb{H}_{2}}\), Algorithm 3 becomes as follows.

Algorithm 4

  • Initialization. Pick \(x^{g} \in C_{0} = C\) and choose the parameters \(\eta, \theta\in(0, 1)\), \(0 < \underline{\rho} \leq \bar {\rho} \), \(\{ \rho_{k} \} \subset[\underline{\rho} , \bar{\rho} ]\), \(0 < \underline{\gamma} \leq\bar{\gamma} < 2 \), \(\{ \gamma_{k} \} \subset[ \underline{\gamma}, \bar{\gamma}] \), \(0 < \alpha\), \(\{\alpha _{k}\} \subset [\alpha, +\infty)\), \(\mu\in(0, \frac{1}{\|A\|})\).

  • Iteration k (\(k = 0, 1, 2, \ldots \)). Having \(x^{k}\), do the following steps:

    1. Step 1.

      Solve the strongly convex program

      $$CP\bigl(x^{k}\bigr)\quad \min \biggl\{ f\bigl(x^{k}, y\bigr) + \frac{1}{2\rho_{k}} \bigl\Vert y-x^{k}\bigr\Vert ^{2}: y \in C \biggr\} $$

      to obtain its unique solution \(y^{k}\).

      If \(y^{k} = x^{k}\), then set \(u^{k} = x^{k}\) and go to Step 4. Otherwise, go to Step 2.

    2. Step 2.

      (Armijo linesearch rule) Find \(m_{k}\) as the smallest positive integer number m such that

      $$ \textstyle\begin{cases} z^{k,m} = (1 - \eta^{m})x^{k} + \eta^{m} y^{m}, \\ f(z^{k,m}, x^{k}) - f(z^{k,m}, y^{k}) \geq\frac{\theta}{2 \rho_{k}}\|x^{k} - y^{k}\|^{2}. \end{cases} $$

      Set \(\eta_{k} = \eta^{m_{k}}\), \(z^{k} = z^{k, m_{k}}\).

    3. Step 3.

      Select \(\xi^{k} \in\partial_{2}f(z^{k}, x^{k})\) and compute \(\sigma_{k} = \frac{f(z^{k}, x^{k})}{\|\xi^{k}\|^{2}}\), \(u^{k} = P_{C}(x^{k} - \gamma_{k}\sigma_{k}\xi^{k})\).

    4. Step 4.

      \(w^{k}=T_{\beta_{k}}^{g}Au^{k}\).

    5. Step 5.

      \(t^{k}=P_{C}(u^{k}+\mu A^{*}(w^{k}-Au^{k}))\).

    6. Step 6.

      Define \(C_{k+1} = \{x \in C_{k}: \|x - t^{k}\| \leq \| x - u^{k}\| \leq\|x - x^{k}\| \}\). Compute \(x^{k+1} = P_{C_{k+1}}(x^{g})\) and go to iteration k with k is replaced by \(k+1\).

The following result is an immediate consequence of Theorem 2.

Corollary 2

Let \(g: Q \times Q \to\mathbb{R}\) be a bifunction satisfying Assumption A, and \(f: C \times C \to\mathbb{R}\) be a bifunction satisfying Assumption B. Let \(A: \mathbb{H}_{1} \to\mathbb{H}_{2}\) be a bounded linear operator with its adjoint \(A^{*}\). If \(\varOmega =\{x^{*}\in\operatorname{Sol}(C, f): Ax^{*} \in\operatorname {Sol}(Q, g)\}\neq\emptyset\), then the sequences \(\{x^{k}\}\) and \(\{u^{k}\} \) converge strongly to an element \(p \in \varOmega \), and \(\{w^{k}\}\) converges strongly to \(Ap \in\operatorname{Sol}(Q, g)\).

5 Conclusion

Two linesearch algorithms for solving a split equilibrium problem and nonexpansive mapping \(\operatorname{SEPNM}(C, Q, A, f, g, S, T)\) in Hilbert spaces have been proposed, in which the bifunction f is pseudomonotone on C with respect to its solution set, the bifunction g is monotone on Q, and S and T are nonexpansive mappings. The weak and strong convergence of iteration sequences generated by the algorithms to a solution of this problem are obtained.