Background

Of the millions of patients hospitalized yearly, a large proportion is anemic at admission. Preoperative anemia rates range from 20 to 75% [1], and hospital acquired anemia often adds to the problem [2]. In most cases, anemia is not considered a clinically significant condition, remains unnoticed, and therefore uncorrected in hospitalized patients.

However, a large body of evidence shows that anemia, blood loss, and transfusion are independent risk factors for adverse outcomes including morbidity, mortality and average length of hospital stay [3,4,5,6]. Patient blood management is defined by the WHO as ”a set of evidence-based practices to optimize medical and surgical patient outcomes through preservation of the patient’s own blood” [7]. The International Foundation for Patient Blood Mangement specifies, that “Patient Blood Management (PBM) is an evidence-based bundle of care to optimize medical and surgical patient outcomes by clinically managing and preserving a patient’s own blood” [8]. Patient blood management rests on three pillars: diagnosis and treatment of anaemia (especially iron deficiency anaemia), minimization of blood loss, and avoidance of unnecessary transfusions. In addition to being a fundamental element of good clinical practice in transfusion, it plays a key role in primary health care. The multi-professional, multimodal, and individualized approach involves general practitioners, hematologists, anesthesiologists, intensive care specialists, surgeons, and others. The term ‘Patient Blood Management’ was coined in 2005 [9], but the concept has been emerging since a much longer time [10, 11]. Meanwhile, large multicentric observational studies and randomized controlled trials demonstrated that Patient Blood Management significantly improves morbidity, mortality, and average length of hospital stay, while reducing overall cost of care [12,13,14,15]. Clinical thought leaders urge that Patient Blood Management should be implemented as standard of care, and reduction of allogeneic blood product utilization should serve as a marker for success [16, 17]. In 2010, the World Health Organization (WHO) endorsed Patient Blood Management [18] and the fourth Strategic Objective of the ‘WHO Action framework for blood products 2020-2023’ released in February 2020 calls for ‘Effective implementation of patient blood management’ [7].

However, despite compelling evidence and ongoing WHO policy drive, practical guidance for healthcare providers and national authorities [16, 19,20,21] and clinical guidelines and recommendations across numerous specialties and national health systems [17, 22,23,24,25,26,27,28,29,30], implementation of Patient Blood Management is still far behind the expectations for good and safe clinical practices.

The implementation of Patient Blood Management is hampered by barriers mostly related to the difficulty of changing traditional “physicians’ attitudes” towards transfusion [31] and “transfusion behavior” [32,33,34]. Even hard-hitting crises such as the HIV-pandemic in the 1970s and 1980s with tens of thousands infected from contaminated donor blood, the huge death toll, billions of dollars in financial losses from lawsuits and compensations and criminal charges [35] only had a transient impact on changing long standing transfusion practice [36]. What was called at the time “transfusion alternative strategies” showed compelling results and could have been helpful to reduce overall blood utilization with similar outcomes [37,38,39,40], but went largely unnoticed [3]. Instead, the focus remained solely on improving blood product safety through introducing donor blood testing methods with unprecedented cost per quality adjusted life year (QALY) between 4.7 and 11.2 million US-$, representing 94–224 times the then commonly accepted threshold in public health decision making (50,000 US-$/QALY) [41, 42]. Meanwhile, and despite rapidly accumulating clinical evidence for adverse transfusion outcomes and favorable Patient Blood Management outcomes [43], numerous Patient Blood Management guidelines [17, 22,23,24,25,26,27,28,29,30], WHO endorsement [18], call for Patient Blood Management [7], and several national policy recommendations, the global implementation of Patient Blood Management is still alarmingly slow. Huge inter-center and inter-country transfusion variability indicates, that blood utilization is rather driven by culture and behavior than evidence [33, 34, 44,45,46].

Continuing to ignore the cumulative evidence puts life, well-being and safety of millions of hospitalized patients at risk. Delaying Patient Blood Management implementation also means that healthcare systems forego savings of macro-economic magnitudes from a system-wide implementation of Patient Blood Management [15]. This is even more alarming in countries striving towards Universal Healthcare Coverage and with severe resource constraints. In 2016, Eichbaum et al. compared the Patient Blood Management implementation status in four countries using a six-questions survey and observed considerable variation between countries driven both by differences in health contexts and disparities in resources [47]. They concluded that comparing Patient Blood Management strategies across low-, middle-, and high-income countries should foster mutual learning and implementing innovative, evidence-based strategies for improvement.

Following this recommendation, a more in-depth questionnaire was developed in this study to gather, through interviews, the experiences of a diverse group of implementors of Patient Blood Management across countries with different economic and healthcare contexts. The first aim was to describe the status-quo and chosen implementation approach in each of the surveyed countries, and to extract the drivers, barriers, measures, and stakeholders to be involved. The second aim of the study was to analyze this information and synthesize it into an implementation framework for Patient Blood Management which can serve as a comprehensive guidance how to implement Patient Blood Management.

Methods

Semi-structured interviews mostly lasting 45–60 min were conducted between November 2019 and May 2020 with a multi-disciplinary group of 36 Patient Blood Management implementors leading the implementation of Patient Blood Management in their respective environment. Ten countries from Latin America, Central and Eastern Europe, Asia, Middle East and Africa were selected to reflect experiences from countries with different levels and types of healthcare resources and system (national/ private funders, public / private providers), and different developmental stages of Patient Blood Management (from early stage to more advanced). In addition, Australia was chosen as a reference country, where Patient Blood Management is adopted broadly and supported through public health authorities since 2008 and through National Patient Blood Management Guidelines since 2009 [15, 48, 49]. Likewise, a Swiss reference case was included, where Patient Blood Management is sustainably implemented across a leading hospital (University Hospital of Zürich). All interviewees were actively involved in implementing Patient Blood Management, and they were selected from the network of the authors, the International Foundation Patient Blood Management [50], and the local networks of the industry or other interviewees. The selection aimed to represent different clinical disciplines (e.g., hematologists, anesthesiologists, surgeons) and perspectives (e.g., clinical specialists, blood bank, policy, Patient Blood Management coordinator, industry). All interviews followed the structure of a newly developed questionnaire (Additional File 1). One question required rating of predefined barriers between 0 (not important) and 4 (very important). To allow the respondent to provide potentially unexpected answers, all other nine questions were formulated open without prompting specific answers. The survey was piloted with 11 interviewees and then fully rolled-out after minor improvements in language and sequence of questions (survey flow). Most interviews were conducted via web-communication (GoToMeeting™) by a single interviewer (AP Holtorf, Dr. rer. nat, female, without pre-existing relationship to the interviewees) in English language, two interviews were conducted by a second qualified male interviewer in Chinese language after detailed briefing by the main interviewer. The interview questionnaire was provided to the interviewees at least 1 week before the interviews. During the interviews, the interviewees verbally consented to note-taking, recording, and publication of the results. The notes were revised using the recordings and the interviewees had the opportunity to review, correct or complement their initial responses. The COREQ checklist was applied to document transparent reporting of this interview-based qualitative study and the completed form is available as Additional File 2 [51]. Qualitative content analysis was performed for analysis and synthesis following published guidance [52, 53]: 1.) Responses per country were extracted to a structured summary document (from two to four interviews per country except for Switzerland with one). 2.) Responses from all countries regarding status-quo, approach of the implementation, and 3.) drivers, barriers, measures, and stakeholders for Patient Blood Management were transferred in an electronic spreadsheet and coded guided by the items mentioned by the interviewees (grounded theory approach). 4.) The coded responses from step three were evaluated for the frequency of mentions (frequency analysis). 5.) Accelerating and inhibiting factors were pooled and translated into implementation measures (re-coding). 6.) Using an axial coding approach [54], the measures were classified by the interventional levels (policy/government, funding, research, healthcare provision, training/education, and public / patients). Steps 1 to 5 were conducted by the main interviewer and step 6 collaboratively by the authors.

Results

Demographics

Thirty-six Patient Blood Management implementors, named “Patient Blood Management Implementation Group” with 15 women and 21 men from 12 countries, were interviewed following 11 pilot interviews (total of 47). The respective perspectives are depicted in Table 1.

Table 1 Demographics of the interviewees. (1 expert could represent more than 1 perspectives. Therefore, the numbers in the columns can add up to more than the number of experts). The survey was piloted with representatives of pharmaceutical companies being actively involved in Patient Blood Management (Abdi Ibrahim, Genesis Pharma, Hikma, Sandoz Pharma, Takeda, Vifor Pharma)

Current status and approach in implementing patient blood management (question 3)

The country-level responses for the current level of Patient Blood Management implementation and the approaches (top-down, bottom-up, or both approaches simultaneously) are summarized in Table 2. Australia, after initial bottom-up implementation in several leading public and private institutions, has fully implemented Patient Blood Management supported by national institutions including the National Blood Authority (NBA), the Australian Commission on Safety and Quality in Healthcare, the Western Australia Department of Health, and the Australian Red Cross Blood Service. In South Korea, Patient Blood Management was implemented in few institutions about a decade ago, followed by a broader strategic approach supported by national authorities. In China, Turkey and Mexico, Patient Blood Management implementation originated with leading clinicians (“champions”) of large national institutions and is now increasingly recognized by the authorities. In South Africa, the implementation of Patient Blood Management is led by the South African National Blood Service and supported by a national Patient Blood Management expert group [21].

Table 2 Summary of interview responses to the questions relating to the current status and approach to implementing Patient Blood Management on the national or local level

Croatia, Greece and Lebanon seek the dual pathway, although the current political situation in Lebanon has put all governmental support to a halt. Brazil, Saudi Arabia, and Switzerland currently rely on local clinician-led initiatives (bottom-up).

Drivers for the implementation of patient blood management (question 7A)

Of the 11 drivers mentioned unprompted during the interviews (Fig. 1), patient outcomes (26 mentions), cost savings (23 mentions), preventing or better dealing with blood shortages (16 mentions from Sth. Korea, Turkey, Mexico, China, Brazil), improving patient safety or reducing complications (15 mentions from Brazil, China, Sth. Korea, Saudi Arabia, Turkey) were quoted most frequently. Several experts also mentioned national policy [8], education and awareness (concerning the risks of transfusion and benefits of Patient Blood Management) [7], and a quality assurance system [6].

Fig. 1
figure 1

Drivers for Patient Blood Management. Quantitative evaluation of all drivers mentioned by the interviewees when asked the question” What could be the main drivers for Patient Blood Management – Why is Patient Blood Management needed?”. The responses were spontaneous and unprompted. (N = 46) The driving factors were sorted by the total number of mentions (top to bottom decreasing). Note: The number of mentions is not a measure for the strength of a specific driver. Education & Awareness is abbreviated for ‘education and awareness relating to the risks of transfusion and the benefits of Patient Blood Management’

Shorter length of hospital stays, better use of resources, and reduction of waste were only mentioned once each. Patient demand was considered to become a driver once the risks related to transfusion and the benefits Patient Blood Management were recognized more broadly in the general population.

Barriers for the Implementation of patient blood management (question 6)

Except for Australia, where Patient Blood Management is already widely adopted into practice, the need to change work practice was rated as the most prominent barrier for the implementation of Patient Blood Management as shown in Table 3. The need for collaboration and communication was rated equally important across the countries, followed by the lack of experience with Patient Blood Management, the feasibility to integrate Patient Blood Management into the current processes, and strong belief in transfusion.

Table 3 Rating of Barriers for Implementation by perceived severity of the barrier. The rating was between 0 (is no barrier) and 4 (high barrier). The barriers were sorted by the average rating (top to bottom decreasing). (N = 35) Color coding: red for average country values of 3 or higher, white for values between 2.01 and 2.99, and green for values of 2 or lower

Accelerators and inhibitors for the implementation of patient blood management (question 7E)

The responses for factors accelerating or supporting Patient Blood Management implementation fell into 24 categories as shown in Fig. 2(left part). Generation of local data and evidence, education and training for Patient Blood Management, a national Patient Blood Management policy, and strong thought leadership, were the most frequently mentioned factors. Blood scarcity, funding, awareness of transfusion risks, incentives for Patient Blood Management engagement, belief and commitment of care personnel, and quality assurance obligation were also frequently mentioned. During the final six interviews between February and May 2020, the COVID-19 pandemic was newly mentioned as potential accelerator due to increased blood scarcity and potential blood safety issues.

Fig. 2
figure 2

Accelerators and Inhibitors for Patient Blood Management. Quantitative evaluation of factors mentioned by the interviewees when asked for the factors which would accelerate (Accelerators) or delay or inhibit (Inhibitors) the implementation of Patient Blood Management from their perspective. The responses were spontaneous and unprompted. (N = 46) The items were sorted by the total number of mentions (top to bottom decreasing). Note: The number of mentions is not a measure for the strength of a specific accelerator or inhibitor

The inhibitors or delaying factors fell into 22 categories (see Fig. 2, right part) with the most frequently mentioned being low awareness, no funding for set-up cost, education gaps, and stickiness of the old practice (even stronger if combined with the responses for the closely related resistance against change), lack of interdisciplinary commitment, and resistance against change.

Stakeholders (question 7B)

Sixty-three percent of the interviewees (29 of 46) identified policy makers (National Health Council, Ministry of Health, etc.) as important stakeholders in Patient Blood Management implementation. As shown in Fig. 3, the majority also listed either specialists in general [22], or specific specialists (12 x anesthesiologists, 7 x hematologists, 5 x surgeons), 35% (16 of 46) included the hospital management. Other stakeholders (professional societies, national or regional blood banks, payers, nursing staff, enthusiastic champions, hospital pharmacists, patients/patient organizations, pharmaceutical companies, researchers/academics, hospital champion, general practitioners were mentioned less frequently or only in other parts of the interview (medical schools, non-governmental organizations, or the public at large).

Fig. 3
figure 3

Stakeholders Influencing Patient Blood Management Implementation. Quantitative evaluation of categories mentioned by the interviewees to the question “Who in your opinion will be the essential stakeholders who will have to be involved / convinced?”. The responses were spontaneous and unprompted. (N = 46) The stakeholder types were sorted by the total number of mentions (top to bottom decreasing). Note: The number of mentions is not a measure for the importance of a specific stakeholder. Medical education, Non-governmental organization (NGO) and the Public were not mentioned as important stakeholders specifically, but they were mentioned in other parts of the interview as important groups and therefore were added for completeness

Coding and clustering of implementation measures

After translating accelerators and inhibitors into actionable measures and clustering these measures by the type (level) of intervention, six levels for intervention were identified: government/policy, funding, research, healthcare providers, education/training, and public/patients. On each of the six levels specific measures can contribute to the implementation of Patient Blood Management as reflected in Table 4 with reference to the concrete examples reported by the implementors.

Table 4 Summary of measures to consider for implementing PBM, sorted by level of intervention: Government (national and/or regional), funding, research, healthcare provision, training/education, and patients

Discussion

The challenge

Unless translated into the daily routine and organizational culture, evidence is of limited value [71]. To bridge the gap and effectuate the necessary culture change, it is essential to understand the drivers and barriers for Patient Blood Management as well as the stakeholders’ roles and responsibilities. An essential challenge in replacing the long-standing, well-organized, product-centered culture of transfusion medicine by the patient-centered model of Patient Blood Management is that most diverse stakeholders need to communicate, collaborate and overcome the complexity of the Patient Blood Management implementation process. This starts with their specific contribution to the systemic implementation as summarized into the implementation matrix displayed in Fig. 4, which was derived from the full and detailed collection of measures identified from the interviews (Table 4). We will discuss each level of the table in more detail in the passages following below.

Fig. 4
figure 4

Patient Blood Management Implementation Matrix. Implementation matrix summarizing the aims, measures, and expected outcomes of comprehensive Patient Blood Management across six implementation levels. This implementation matrix is derived from the full table of measures (Table 4). a) Equity: access to evidence-based blood preservation for all patients/citizens in the country

Using the Implementation matrix to develop patient blood management strategies

The Patient Blood Management-implementation matrix, as derived from the interviews, guides Patient Blood Management implementors in systematically identifying effective measures for Patient Blood Management implementation depending on the economic and healthcare context in their country.

These measures will be discussed in more detail along six implementation levels and consolidated in the final section into a Guided Implementation recommendation.

Government level

Patient Blood Management is expected to improve quality of care, reduce dependency on donor blood, and contribute to better access to healthcare and equity (evidence-based blood preservation for all patients/citizens in the country). In Western Australia, hospital stays were reduced by almost 70,000 days over 5 years [15]. Suchlike improvement enhances capacity of care and consequently, patient access, and resource utilization. Likewise, the savings due to Patient Blood Management allow for better allocation of scarce resources, thus increasing productivity of the healthcare sector. This should motivate national policy makers to prioritize Patient Blood Management.

National policy makers and senior representatives of the Health Ministry are important stakeholders in coordinating Patient Blood Management implementation nationally (see Fig. 3). Reporting and incentivization of key performance indicators, accreditation of healthcare providers for Patient Blood Management, Patient Blood Management certification of clinicians, and funding and facilitating the development of multi-disciplinary national Patient Blood Management guidelines form essential structural elements for driving Patient Blood Management implementation nation-wide.

However, structural changes on government level usually require long time. One implementor stated “it takes more than seven years to introduce a policy in our country”. Creating a sense of urgency through multiple stimuli, including success stories demonstrated in pilots and the generation, publication, or communication of the evidence, can help to overcome the inertness for introducing a new medical model perceived as being complex [10].

Healthcare provider level

Patient Blood Management offers the rare opportunity to improve patient outcomes while reducing resource utilization and cost [15, 72, 73]. The healthcare provider related measures reported by the implementors start with the identification of local champions and allies from clinical and non-clinical departments to create the sufficient momentum and mass for the implementation. The securing of funding, information technology (IT) infrastructure and support to enable Patient Blood Management data collection, reporting and benchmarking was deemed equally necessary as establishing multi-professional teams, Patient Blood Management committees, program coordinators and nurses. As recommended previously by others [19, 61] and aligned with recognized approaches to change [74, 75], implementors preferred a piloting approach (“harvest low hanging fruit”) accompanied by the development of internal capability, aiming to gain practical experience and to optimize the Patient Blood Management processes in the local context. Other important modules on the provider level were developing Patient Blood Management standard operating procedures, defining key performance indicators, and measuring outcomes.

Electronic clinical decision support systems for controlling transfusions were deemed effective, also if combined with systems to incentivize and reward the progression towards Patient Blood Management. Electronic transfusion decision support systems can effectively reduce transfusion rate and index in the daily routine [76, 77] and serve as a ‘nudging’ mechanism. ‘Nudging’ denotes “non-regulatory and non-monetary interventions for changing behavior that steer people in a particular direction while preserving their freedom of choice” [67, 68]. This includes automated or targeted reminders, individual performance reviews based on local data collection and analysis, or Patient Blood Management dashboards as reported elsewhere [78].

Training and education level

To avoid asymmetry of information and conflicting behaviors within the hospital, training, and communication on Patient Blood Management needs to address the entire clinical staff including clinical specialists, nurses, pharmacists, and others influencing decisions related to managing patients’ blood. Implementors suggested that clinical knowledge and skills for Patient Blood Management must be embedded in both under- and postgraduate education (curricula in medical schools, accredited continuous medical education, Patient Blood Management academies, and e-learning- and information-platforms). However, except for Western Australia, Patient Blood Management is currently not part of the undergraduate curriculum of medical students. Like Patient Blood Management preceptorships, educational and training activities for Patient Blood Management are currently organized for post-graduates, often initiated by the implementors and local Patient Blood Management champions, and mostly industry sponsored. Implementors should liaise with the leadership of academia and medical schools to firmly integrate Patient Blood Management into the undergraduate education in alignment with the federal Ministries of Health and Education, where applicable.

Research level

Patient Blood Management offers a broad spectrum of new experimental, clinical, epidemiological, and health-economic research opportunities, as evidenced by the growing number of research publications. Benchmarking and reporting of key performance indicators for Patient Blood Management yield valuable insights concerning clinical and economic outcomes related to Patient Blood Management. Further research as well as national and international exchange will help to improve Patient Blood Management techniques as also highlighted by international thought leaders [29, 61, 78, 79]. Most importantly, as an essential prerequisite, the implementors demanded to generate and communicate local evidence (prove of outcomes and cost-effectiveness in the local context at local cost structures) to link the implementation across hospitals and to foster policies on the national level.

Funder level

Public funders may benefit from Patient Blood Management through reduced average length of hospital stay and lower resource consumption, resulting in cost containment and better resource use. Private funders may expect higher profitability, in particular with diagnosis related groups (DRG) or value-based reimbursement systems (e.g., accountable care): in DRGs with high anemia prevalence and potentially high blood loss such as obstetrics, cardiovascular surgery or oncology, the total cost per episode of care have shown to decrease over time, thus leading to reduced tariffs [80]. For Germany, overall yearly cost-savings with elective surgery were calculated to be €1029 million - almost 1.58% of the total national hospital budget [81].

Even in fee-for-service settings, funders may benefit from Patient Blood Management: currently, they might reimburse hospitals for the number of transfusions administered, while patients pay for their anemia treatment out-of-pocket. Where transparent, implementors in the interviews reported increasing cost of blood components (per unit) due to increasing measures for quality and safety testing. Once funders begin incentivizing (pre-operative) anemia management as an essential part of Patient Blood Management, they foster better outcomes, fewer complications, and shorter hospital stays, thus reducing the overall reimbursement cost per episode of care as compared to the currently established transfusion preferences [15, 63]. The cost of quality assurance and administering these blood products is a multifold of the actual acquisition cost and therefore, represents a substantial cost volume for the hospital and consequently for the funder, even where allogeneic blood products are covered by national funds and are considered ‘free’ [82, 83].

Appropriate reimbursement of Patient Blood Management including anemia management was a strong request in our interviews, and implementors even proposed to incentivize Patient Blood Management for healthcare providers. Given the documented savings potential with Patient Blood Management [15, 64, 81, 84,85,86], it should be a priority for implementors to inform, educate and engage funders on this important issue. Following the example of the German health insurance BARMER [80], insurers may even help underpinning the Patient Blood Management value using their own data to demonstrate savings with improved outcomes.

Patient level

According to the implementors, Patient Blood Management and its benefits are largely unknown to patients, despite being the ‘big winners’ from Patient Blood Management with significantly improved clinical outcomes, safety, and reduced average length of hospital stay. Patients usually seek medical treatment based on a proper diagnosis and expect to be treated with safe and effective medical or surgical interventions. Unless being informed by their treating physician and being involved for shared decision making, they would not know that Patient Blood Management improves their chances for earlier discharge from hospital and reduces their risk for hospital acquired infection or even mortality. Patient advocates could contribute by creating Patient Blood Management awareness, but also by educating for and defending patients’ rights. Collaborating and likewise, supporting national campaigns to emphasize safety and the beneficial outcomes of Patient Blood Management, could foster shared clinical decision making and informed consent. Some implementors even saw the potential for patient advocates to approach funders to incentivize and support Patient Blood Management.

Potential risks were expected by one implementor when entering the public domain too early and thus, creating demand before physicians would be sufficiently familiar with Patient Blood Management and its benefit. Another implementor cautioned, that too much information on transfusion risks may negatively impact on the willingness to donate blood. Involvement of patients or patient advocates should be planned thoroughly within the country culture and context. However, the aim to involve patients more in their own care [87], the strive for ‘person-centered healthcare’ [88], and the priority of increased patient safety [89,90,91] conforms to physicians’ obligations towards educating and informing patients about all risks and benefits of available treatment options. Medico-legal experts increasingly caution that widespread disregard of transfusion associated risks for adverse outcomes may result in litigation against those neglecting physicians and specialists [92]. Informing the public and the patients in collaboration with patient advocacy groups can be a powerful element of the Patient Blood Management implementation strategy. Engaging the public and patients will not only result in more demand for Patient Blood Management but also improve patient satisfaction and foster participatory medicine.

Guided Implementation

In some of the countries described in this survey, Patient Blood Management was implemented simultaneously from bottom-up (e.g., from a department level or hospital/clinical level) and top-down (driven by policy and/or hospital administrative leadership) (see Table 2) with large variation in the closeness of the interaction between policy and operational levels. In other countries, implementation progresses just through the bottom-up pathway, predominantly initiated, and led by individuals or small groups with different clinical background or innovation managers. To effectively coordinate and execute a statewide or even national implementation project across all six interdependent layers requires governance [15, 20, 93]. Following the example of Western Australia [15, 93], the EU Guide for Health Authorities [20] suggests that National Patient Blood Management Steering Committees, preferably under the authority of the Health Ministry, should coordinate planning and provisioning of Patient Blood Management resources, structural requirements, and national and international Patient Blood Management research efforts. Transitional tasks forces were proposed to develop national Patient Blood Management reimbursement schemes and managing Patient Blood Management transition costs (i.e. costs to manage the ‘paradigm shift’). Likewise, National Patient Blood Management Steering Committees could facilitate broad and homogeneous adoption, supported by national programs or committees for guidelines development, data collection, benchmarking, and analytics.

The experiences and expectations of the implementors confirmed the importance of adapting to the local healthcare and cultural context and aligning with the local / national healthcare priorities and funding situation. Implementation success depends on good change strategies. Resistance from the old transfusion paradigm due to ignorance and conflicting incentives needs to be overcome, and the Patient Blood Management paradigm must be anchored in the healthcare delivery culture. Future research, for example with proponents of the transfusion priority, could further investigate the motivation for such resistance and possible ways to overcome it.

Kotter’s model for managing change embraces eight essential accelerators: establishing a sense of urgency, creating a guiding coalition, developing a change vision, communicating the vision for buy-in, empowering broad-based action, generating short-term wins, never letting up, and incorporating changes into the culture [65, 94]. This should be considered regardless of where implementation starts, whether on a national, regional or hospital level, or initiated by a blood bank. Concurrent action, well adapted to the local context, across all eight change accelerators while rapidly building a network of change agents should maximize its adoption and impact [65]. For example, for a clinician it is probably easiest to start the process in the own specialty, which is within her or his own control. However, even at that stage, it would be good to design an implementation plan aiming for broader implementation. An example for a stepwise implementation starting on the hospital level is available in the online material as a part of a slide show summarizing the key findings of this manuscript (Additional File 3, slide 8). Of course, careful planning the implementation is indispensable when aiming at wider adoption of Patient Blood Management.

Additional file 3.

The implementation matrix (Fig. 4) may serve as a guidance in planning, even if starting with a small pilot. Following Realist Evaluation approach [95] the user should see the matrix as a ‘menu’ of elements for designing the local implementation. On each level, the implementors need to assess what works (best) in the local context, when, and which stakeholders should be involved for successfully creating the implementation path for Patient Blood Management in the country or organization.

Adaptation to the local context depends on access to and inclusion of the key stakeholders and influencers within the own healthcare environment. Implementors need to identify the stakeholders in implementing Patient Blood Management and understand what motivates each of them to support, engage, or contribute [19,20,21].

Limitations

The following limitations should be considered for this research. The selected countries cannot be fully representative for all countries and healthcare systems across the world. However, they were from five continents and included healthcare systems of high or lower income, and the interviewees were professionals leading and/or promoting Patient Blood Management in the healthcare sector of their respective environment. The latter may also be a limitation of the study as we did not interview stakeholders who are opposing the adoption of Patient Blood Management. A survey with these groups could help to better understand and address potential resistance or opposition. The impact of the various implementation measures across six levels could not be determined. Once Patient Blood Management will be established in more countries and healthcare systems, key performance indicators might be linked to specific measures and rated, thus showing their relative importance.

Conclusion

With the objective of learning from the practical experiences with the implementation of Patient Blood Management, structured interviews were conducted with a multi-disciplinary group of Patient Blood Management implementors in 12 countries reflecting initial, advanced, and full level of implementation. There was consensus that patients would benefit most from Patient Blood Management, with improved outcomes including morbidity, mortality, quality of life, average length of hospital stay, and patient safety. The expected improvements in outcomes and cost savings as well as more efficient use of (blood) resources were identified as the core drivers. The need for changing work practice and for collaboration and communication and the lack of experience with Patient Blood Management were rated as most important barriers for Patient Blood Management. After converting the identified accelerators and inhibitors for Patient Blood Management into actionable implementation measures, six levels for intervention were identified, including government, healthcare providers, education, funders, research, and patients. This forms the framework for a six-level implementation matrix, describing all measures and expected outcomes as reported by the implementors.