1 Introduction and preliminaries

The study of fixed points of mappings satisfying certain contractive conditions has been in the center of rigorous research activity. For a survey of common fixed point theory in metric and cone metric spaces, we refer the reader to [19]. In 2006, Bhaskar and Lakshmikantham [10] initiated the study of a coupled fixed point in ordered metric spaces and applied their results to prove the existence and uniqueness of solutions for a periodic boundary value problem. For more works in coupled and coincidence point theorems, we refer the reader to [1113].

Some authors generalized the concept of metric spaces in different ways. Mustafa and Sims [14] introduced the notion of G-metric space, in which the real number is assigned to every triplet of an arbitrary set as a generalization of the notion of metric spaces. Based on the notion of G-metric spaces, many authors (for example, [1533]) obtained some fixed point and common fixed point theorems for mappings satisfying various contractive conditions. Fixed point problems have also been considered in partially ordered G-metric spaces [3439].

The purpose of this paper is to obtain some common coupled coincidence point theorems in G-metric spaces satisfying some contractive conditions.

The following definitions and results will be needed in the sequel.

Definition 1.1 [14]

Let X be a nonempty set, and let G:X×X×X R + be a function satisfying the following axioms:

  1. (G1)

    G(x,y,z)=0 if x=y=z;

  2. (G2)

    0<G(x,x,y) for all x,yX with xy;

  3. (G3)

    G(x,x,y)G(x,y,z) for all x,y,zX with zy;

  4. (G4)

    G(x,y,z)=G(x,z,y)=G(y,z,x)= (symmetry in all three variables);

  5. (G5)

    G(x,y,z)G(x,a,a)+G(a,y,z) for all x,y,z,aX (rectangle inequality),

then the function G is called a generalized metric, or more specifically, a G-metric on X, and the pair (X,G) is called a G-metric space.

Definition 1.2 [14]

Let (X,G) be a G-metric space, and let { x n } be a sequence of points in X, a point x in X is said to be the limit of the sequence { x n } if lim m , n G(x, x n , x m )=0, and one says that the sequence { x n } is G-convergent to x.

Thus, if x n x in a G-metric space (X,G), then for any ϵ>0, there exists NN such that G(x, x n , x m )<ϵ for all n,mN.

Proposition 1.3 [14]

Let (X,G) be a G-metric space, then the following are equivalent:

  1. (1)

    { x n } is G-convergent to x.

  2. (2)

    G( x n , x n ,x)0 as n.

  3. (3)

    G( x n ,x,x)0 as n.

  4. (4)

    G( x n , x m ,x)0 as n,m.

Definition 1.4 [14]

Let (X,G) be a G-metric space. A sequence { x n } is called G-Cauchy sequence if for each ϵ>0, there exists a positive integer NN such that G( x n , x m , x l )<ϵ for all n,m,lN; i.e., if G( x n , x m , x l )0 as n,m,l.

Definition 1.5 [14]

A G-metric space (X,G) is said to be G-complete if every G-Cauchy sequence in (X,G) is G-convergent in X.

Proposition 1.6 [14]

Let (X,G) be a G-metric space, then the following are equivalent:

  1. (1)

    The sequence { x n } is G-Cauchy.

  2. (2)

    For every ϵ>0, there exists kN such that G( x n , x m , x m )<ϵ for all n,mk.

Proposition 1.7 [14]

Let (X,G) be a G-metric space. Then the function G(x,y,z) is jointly continuous in all three of its variables.

Definition 1.8 [14]

Let (X,G) and ( X , G ) be G-metric space, and let f:(X,G)( X , G ) be a function. Then f is said to be G-continuous at a point aX if and only if for every ϵ>0, there is δ>0 such that x,yX and G(a,x,y)<δ implies that G (f(a),f(x),f(y))<ϵ. A function f is G-continuous at X if and only if it is G-continuous at all aX.

Proposition 1.9 [14]

Let (X,G) and ( X , G ) be G-metric spaces, then a function f:X X is G-continuous at a point xX if and only if it is G-sequentially continuous at x; that is, whenever ( x n ) is G-convergent to x, (f( x n )) is G-convergent to f(x).

Proposition 1.10 [14]

Let (X,G) be a G-metric space. Then for any x, y, z, a in X, it follows that

  1. (i)

    if G(x,y,z)=0, then x=y=z;

  2. (ii)

    G(x,y,z)G(x,x,y)+G(x,x,z);

  3. (iii)

    G(x,y,y)2G(y,x,x);

  4. (iv)

    G(x,y,z)G(x,a,z)+G(a,y,z);

  5. (v)

    G(x,y,z) 2 3 (G(x,y,a)+G(x,a,z)+G(a,y,z));

  6. (vi)

    G(x,y,z)G(x,a,a)+G(y,a,a)+G(z,a,a).

Definition 1.11 [10]

An element (x,y)X×X is called a coupled fixed point of a mapping F:X×XX if F(x,y)=x and F(y,x)=y.

Definition 1.12 [11]

An element (x,y)X×X is called a coupled coincidence point of the mappings F:X×XX and g:XX if F(x,y)=gx and F(y,x)=gy.

Definition 1.13 [11]

Let X be a nonempty set. Then we say that the mappings F:X×XX and g:XX are commutative if gF(x,y)=F(gx,gy).

2 Main results

We start our work by proving the following crucial lemma.

Lemma 2.1 Let (X,G) be a G-metric space. Let F 1 , F 2 , F 3 :X×XX and g:XX be four mappings such that

G ( F 1 ( x , y ) , F 2 ( u , v ) , F 3 ( w , z ) ) a 1 G ( g x , g u , g w ) + a 2 G ( g y , g v , g z ) + a 3 G ( g x , g u , g u ) + a 4 G ( g y , g v , g v ) + a 5 G ( g u , g w , g w ) + a 6 G ( g v , g z , g z ) + a 7 G ( g w , g x , g x ) + a 8 G ( g z , g y , g y )
(2.1)

for all x,y,u,v,w,zX, where a i 0, i=1,2,,8 and a 1 + a 2 + a 3 + a 4 + a 7 + a 8 <1. Suppose that (x,y) is a common coupled coincidence point of the mappings pair ( F 1 ,g), ( F 2 ,g) and ( F 3 ,g). Then

F 1 (x,y)= F 2 (x,y)= F 3 (x,y)=gx=gy= F 1 (y,x)= F 2 (y,x)= F 3 (y,x).

Proof Since (x,y) is a common coupled coincidence point of the mappings pair ( F 1 ,g), ( F 2 ,g) and ( F 3 ,g), we have gx= F 1 (x,y)= F 2 (x,y)= F 3 (x,y) and gy= F 1 (y,x)= F 2 (y,x)= F 3 (y,x). Assume that gxgy. Then by (2.1), we get

G ( g x , g y , g y ) = G ( F 1 ( x , y ) , F 2 ( y , x ) , F 3 ( y , x ) ) a 1 G ( g x , g y , g y ) + a 2 G ( g y , g x , g x ) + a 3 G ( g x , g y , g y ) + a 4 G ( g y , g x , g x ) + a 5 G ( g y , g y , g y ) + a 6 G ( g x , g x , g x ) + a 7 G ( g y , g x , g x ) + a 8 G ( g x , g y , g y ) = ( a 1 + a 3 + a 8 ) G ( g x , g y , g y ) + ( a 2 + a 4 + a 7 ) G ( g y , g x , g x ) .

Also by (2.1), we have

G ( g y , g x , g x ) = G ( F 1 ( y , x ) , F 2 ( x , y ) , F 3 ( x , y ) ) a 1 G ( g y , g x , g x ) + a 2 G ( g x , g y , g y ) + a 3 G ( g y , g x , g x ) + a 4 G ( g x , g y , g y ) + a 5 G ( g x , g x , g x ) + a 6 G ( g y , g y , g y ) + a 7 G ( g x , g y , g y ) + a 8 G ( g y , g x , g x ) = ( a 1 + a 3 + a 8 ) G ( g y , g x , g x ) + ( a 2 + a 4 + a 7 ) G ( g x , g y , g y ) .

Therefore,

G ( g x , g y , g y ) + G ( g y , g x , g x ) ( a 1 + a 2 + a 3 + a 4 + a 7 + a 8 ) [ G ( g x , g y , g y ) + G ( g y , g x , g x ) ] .

Since 0 a 1 + a 2 + a 3 + a 4 + a 7 + a 8 <1, we get

G(gx,gy,gy)+G(gy,gx,gx)<G(gx,gy,gy)+G(gy,gx,gx),

which is a contradiction. So, gx=gy, and hence,

F 1 (x,y)= F 2 (x,y)= F 3 (x,y)=gx=gy= F 1 (y,x)= F 2 (y,x)= F 3 (y,x).

 □

Theorem 2.1 Let (X,G) be a G-metric space. Let F 1 , F 2 , F 3 :X×XX and g:XX be four mappings such that

G ( F 1 ( x , y ) , F 2 ( u , v ) , F 3 ( w , z ) ) a 1 G ( g x , g u , g w ) + a 2 G ( g y , g v , g z ) + a 3 G ( g x , g u , g u ) + a 4 G ( g y , g v , g v ) + a 5 G ( g u , g w , g w ) + a 6 G ( g v , g z , g z ) + a 7 G ( g w , g x , g x ) + a 8 G ( g z , g y , g y )
(2.2)

for all x,y,u,v,w,zX, where a i 0, i=1,2,,8 and a 1 + a 2 + a 3 + a 4 +2 a 5 +2 a 6 + a 7 + a 8 <1. Suppose that F 1 , F 2 , F 3 and g satisfy the following conditions:

  1. (i)

    F 1 (X×X)gX, F 2 (X×X)gX, F 3 (X×X)gX;

  2. (ii)

    gX is G-complete;

  3. (iii)

    g is G-continuous and commutes with F 1 , F 2 , F 3 .

Then there exist unique xX such that

gx= F 1 (x,x)= F 2 (x,x)= F 3 (x,x)=x.

Proof Let x 0 , y 0 X. Since F 1 (X×X)gX, F 2 (X×X)gX, F 3 (X×X)gX, we can choose x 1 , x 2 , x 3 , y 1 , y 2 , y 3 X such that g x 1 = F 1 ( x 0 , y 0 ), g y 1 = F 1 ( y 0 , x 0 ), g x 2 = F 2 ( x 1 , y 1 ), g y 2 = F 2 ( y 1 , x 1 ), g x 3 = F 3 ( x 2 , y 2 ) and g y 3 = F 3 ( y 2 , x 2 ). Combining this process, we can construct two sequences { x n } and { y n } in X such that

g x 3 n = F 3 ( x 3 n 1 , y 3 n 1 ) , g y 3 n = F 3 ( y 3 n 1 , x 3 n 1 ) , n = 1 , 2 , 3 , , g x 3 n + 1 = F 1 ( x 3 n , y 3 n ) , g y 3 n + 1 = F 1 ( y 3 n , x 3 n ) , n = 0 , 1 , 2 , 3 , , g x 3 n + 2 = F 2 ( x 3 n + 1 , y 3 n + 1 ) , g y 3 n + 2 = F 2 ( y 3 n + 1 , x 3 n + 1 ) , n = 0 , 1 , 2 , 3 , .

If g x 3 n =g x 3 n + 1 , then gx= F 1 (x,y), where x= x 3 n , y= y 3 n . If g x 3 n + 1 =g x 3 n + 2 , then gx= F 2 (x,y), where x= x 3 n + 1 , y= y 3 n + 1 . If g x 3 n + 2 =g x 3 n + 3 , then gx= F 3 (x,y), where x= x 3 n + 2 , y= y 3 n + 2 . On the other hand, if g y 3 n =g y 3 n + 1 , then gy= F 1 (y,x), where y= y 3 n , x= x 3 n . If g y 3 n + 1 =g y 3 n + 2 , then gy= F 2 (y,x), where y= y 3 n + 1 , x= x 3 n + 1 . If g y 3 n + 2 =g y 3 n + 3 , then gy= F 3 (y,x), where y= y 3 n + 2 , x= x 3 n + 2 . Without loss of generality, we can assume that g x n g x n + 1 and g y n g y n + 1 , for all n=0,1,2, .

By (2.2) and (G3), we have

G ( g x 3 n , g x 3 n + 1 , g x 3 n + 2 ) = G ( F 3 ( x 3 n 1 , y 3 n 1 ) , F 1 ( x 3 n , y 3 n ) , F 2 ( x 3 n + 1 , y 3 n + 1 ) ) = G ( F 1 ( x 3 n , y 3 n ) , F 2 ( x 3 n + 1 , y 3 n + 1 ) , F 3 ( x 3 n 1 , y 3 n 1 ) ) a 1 G ( g x 3 n , g x 3 n + 1 , g x 3 n 1 ) + a 2 G ( g y 3 n , g y 3 n + 1 , g y 3 n 1 ) + a 3 G ( g x 3 n , g x 3 n + 1 , g x 3 n + 1 ) + a 4 G ( g y 3 n , g y 3 n + 1 , g y 3 n + 1 ) + a 5 G ( g x 3 n + 1 , g x 3 n 1 , g x 3 n 1 ) + a 6 G ( g y 3 n + 1 , g y 3 n 1 , g y 3 n 1 ) + a 7 G ( g x 3 n 1 , g x 3 n , g x 3 n ) + a 8 G ( g y 3 n 1 , g y 3 n , g y 3 n ) ( a 1 + a 3 + a 5 + a 7 ) G ( g x 3 n 1 , g x 3 n , g x 3 n + 1 ) + ( a 2 + a 4 + a 6 + a 8 ) G ( g y 3 n 1 , g y 3 n , g y 3 n + 1 ) .
(2.3)

Similarly, we have

G ( g y 3 n , g y 3 n + 1 , g y 3 n + 2 ) ( a 1 + a 3 + a 5 + a 7 ) G ( g y 3 n 1 , g y 3 n , g y 3 n + 1 ) + ( a 2 + a 4 + a 6 + a 8 ) G ( g x 3 n 1 , g x 3 n , g x 3 n + 1 ) .
(2.4)

By combining (2.3) and (2.4), we get

G ( g x 3 n , g x 3 n + 1 , g x 3 n + 2 ) + G ( g y 3 n , g y 3 n + 1 , g y 3 n + 2 ) ( i = 1 8 a i ) [ G ( g x 3 n 1 , g x 3 n , g x 3 n + 1 ) + G ( g y 3 n 1 , g y 3 n , g y 3 n + 1 ) ] .
(2.5)

In the same way, we can show that

G ( g x 3 n 1 , g x 3 n , g x 3 n + 1 ) + G ( g y 3 n 1 , g y 3 n , g y 3 n + 1 ) ( i = 1 8 a i ) [ G ( g x 3 n 2 , g x 3 n 1 , g x 3 n ) + G ( g y 3 n 2 , g y 3 n 1 , g y 3 n ) ]
(2.6)

and

G ( g x 3 n 2 , g x 3 n 1 , g x 3 n ) + G ( g y 3 n 2 , g y 3 n 1 , g y 3 n ) ( i = 1 8 a i ) [ G ( g x 3 n 3 , g x 3 n 2 , g x 3 n 1 ) + G ( g y 3 n 3 , g y 3 n 2 , g y 3 n 1 ) ] .
(2.7)

It follows from (2.5), (2.6) and (2.7) that for all nN, we have

G ( g x n , g x n + 1 , g x n + 2 ) + G ( g y n , g y n + 1 , g y n + 2 ) ( i = 1 8 a i ) [ G ( g x n 1 , g x n , g x n + 1 ) + G ( g y n 1 , g y n , g y n + 1 ) ] = k [ G ( g x n 1 , g x n , g x n + 1 ) + G ( g y n 1 , g y n , g y n + 1 ) ] k 2 [ G ( g x n 2 , g x n 1 , g x n ) + G ( g y n 2 , g y n 1 , g y n ) ] k n [ G ( g x 0 , g x 1 , g x 2 ) + G ( g y 0 , g y 1 , g y 2 ) ] .
(2.8)

Where k= i = 1 8 a i [0,1). From (G3), we have G(g x n ,g x n + 1 ,g x n + 1 )G(g x n ,g x n + 1 ,g x n + 2 ) and G(g y n ,g y n + 1 ,g y n + 1 )G(g y n ,g y n + 1 ,g y n + 2 ). Hence, by the (G3) and (2.8), we get

G ( g x n , g x n + 1 , g x n + 1 ) + G ( g y n , g y n + 1 , g y n + 1 ) G ( g x n , g x n + 1 , g x n + 2 ) + G ( g y n , g y n + 1 , g y n + 2 ) k n [ G ( g x 0 , g x 1 , g x 2 ) + G ( g y 0 , g y 1 , g y 2 ) ] .
(2.9)

Therefore, for all n,mN, n<m, by (G5) and (2.9), we have

G ( g x n , g x m , g x m ) + G ( g y n , g y m , g y m ) [ G ( g x n , g x n + 1 , g x n + 1 ) + G ( g y n , g y n + 1 , g y n + 1 ) ] + [ G ( g x n + 1 , g x n + 2 , g x n + 2 ) + G ( g y n + 1 , g y n + 2 , g y n + 2 ) ] + + [ G ( g x m 1 , g x m , g x m ) + G ( g y m 1 , g y m , g y m ) ] ( k n + k n + 1 + + k m 1 ) [ G ( g x 0 , g x 1 , g x 2 ) + G ( g y 0 , g y 1 , g y 2 ) ] k n 1 k [ G ( g x 0 , g x 1 , g x 2 ) + G ( g y 0 , g y 1 , g y 2 ) ] 0 as  n , m .
(2.10)

Which implies that

G(g x n ,g x m ,g x m )0andG(g y n ,g y m ,g y m )0as n,m.

Thus, {g x n } and {g y n } are all G-Cauchy in gX. Since gX is G-complete, we get that {g x n } and {g y n } are G-convergent to some xgX and ygX, respectively. Since g is G-continuous, we have {gg x n } is G-convergent to gx and {gg y n } is G-convergent to gy. That is,

gg x n gxandgg y n gyas n.
(2.11)

Also, since g commutes with F 1 , F 2 and F 3 , respectively, we have

g g x 3 n = g F 3 ( x 3 n 1 , y 3 n 1 ) = F 3 ( g x 3 n 1 , g y 3 n 1 ) , g g y 3 n = g F 3 ( y 3 n 1 , x 3 n 1 ) = F 3 ( g y 3 n 1 , g x 3 n 1 ) , g g x 3 n + 1 = g F 1 ( x 3 n , y 3 n ) = F 1 ( g x 3 n , g y 3 n ) , g g y 3 n + 1 = g F 1 ( y 3 n , x 3 n ) = F 1 ( g y 3 n , g x 3 n ) , g g x 3 n + 2 = g F 2 ( x 3 n + 1 , y 3 n + 1 ) = F 2 ( g x 3 n + 1 , g y 3 n + 1 ) , g g y 3 n + 2 = g F 2 ( y 3 n + 1 , x 3 n + 1 ) = F 2 ( g y 3 n + 1 , g x 3 n + 1 ) .

Thus, from condition (2.2), we have

G ( g g x 3 n , g g x 3 n + 1 , F 2 ( x , y ) ) = G ( F 1 ( g x 3 n , g y 3 n ) , F 2 ( x , y ) , F 3 ( g x 3 n 1 , g y 3 n 1 ) ) a 1 G ( g g x 3 n , g x , g g x 3 n 1 ) + a 2 G ( g g y 3 n , g y , g g y 3 n 1 ) + a 3 G ( g g x 3 n , g x , g x ) + a 4 G ( g g y 3 n , g y , g y ) + a 5 G ( g x , g g x 3 n 1 , g g x 3 n 1 ) + a 6 G ( g y , g g y 3 n 1 , g g y 3 n 1 ) + a 7 G ( g g x 3 n 1 , g g x 3 n , g g x 3 n ) + a 8 G ( g g y 3 n 1 , g g y 3 n , g g y 3 n ) .

Letting n, using (2.11) and the fact that G is continuous on its variables, we get that

G ( g x , g x , F 2 ( x , y ) ) =0.

Hence, gx= F 2 (x,y). Similarly, we may show that gy= F 2 (y,x). Also for the same reason, we may show that gx= F 1 (x,y), gy= F 1 (y,x), gx= F 3 (x,y) and gy= F 3 (y,x). Therefore, (x,y) is a common coupled coincidence point of the pair ( F 1 ,g), ( F 2 ,g) and ( F 3 ,g). By Lemma 2.1, we obtain

gx= F 1 (x,y)= F 2 (x,y)= F 3 (x,y)= F 1 (y,x)= F 2 (y,x)= F 3 (y,x)=gy.
(2.12)

Since the sequences {g x 3 n 1 }, {g x 3 n } and {g x 3 n + 1 } are all a subsequence of {g x n }, then they are all G-convergent to x. Similarly, we may show that {g y 3 n 1 }, {g y 3 n } and {g y 3 n + 1 } are all G-convergent to y. From (2.2), we have

G ( g x 3 n , g x , g x ) = G ( F 1 ( x , y ) , F 2 ( x , y ) , F 3 ( x 3 n 1 , y 3 n 1 ) ) a 1 G ( g x , g x , g x 3 n 1 ) + a 2 G ( g y , g y , g y 3 n 1 ) + a 3 G ( g x , g x , g x ) + a 4 G ( g y , g y , g y ) + a 5 G ( g x , g x 3 n 1 , g x 3 n 1 ) + a 6 G ( g y , g y 3 n 1 , g y 3 n 1 ) + a 7 G ( g x 3 n 1 , g x , g x ) + a 8 G ( g y 3 n 1 , g y , g y ) .

Letting n, and using the fact that G is continuous on its variables, we get that

G(x,gx,gx)( a 1 + a 7 )G(gx,gx,x)+( a 2 + a 8 )G(gy,gy,y)+ a 5 G(gx,x,x)+ a 6 G(gy,y,y).

Similarly, we may show that

G(y,gy,gy)( a 1 + a 7 )G(gy,gy,y)+( a 2 + a 8 )G(gx,gx,x)+ a 5 G(gy,y,y)+ a 6 G(gx,x,x).

Thus, using the Proposition 1.10(iii), we have

G ( x , g x , g x ) + G ( y , g y , g y ) ( a 1 + a 2 + a 7 + a 8 ) [ G ( g x , g x , x ) + G ( g y , g y , y ) ] + ( a 5 + a 6 ) [ G ( g x , x , x ) + G ( g y , y , y ) ] ( a 1 + a 2 + 2 a 5 + 2 a 6 + a 7 + a 8 ) [ G ( g x , g x , x ) + G ( g y , g y , y ) ] .

Since 0 a 1 + a 2 + a 3 + a 4 +2 a 5 +2 a 6 + a 7 + a 8 <1, so the last inequality happens only if G(x,gx,gx)=0 and G(y,gy,gy)=0. Hence, x=gx and y=gy. From (2.12), we have x=gx=gy=y, thus, we get

gx= F 1 (x,x)= F 2 (x,x)= F 3 (x,x)=x.

To prove the uniqueness, let zX with zx such that

z=gz= F 1 (z,z)= F 2 (z,z)= F 3 (z,z).

Again using condition (2.2) and Proposition 1.10(iii), we have

G ( z , z , x ) = G ( F 1 ( z , z ) , F 2 ( z , z ) , F 3 ( x , x ) ) a 1 G ( g z , g z , g x ) + a 2 G ( g z , g z , g x ) + a 3 G ( g z , g z , g z ) + a 4 G ( g z , g z , g z ) + a 5 G ( g z , g x , g x ) + a 6 G ( g z , g x , g x ) + a 7 G ( g x , g z , g z ) + a 8 G ( g x , g z , g z ) ( a 1 + a 2 + 2 a 5 + 2 a 6 + a 7 + a 8 ) G ( z , z , x ) .

Since 0 a 1 + a 2 + a 3 + a 4 +2 a 5 +2 a 6 + a 7 + a 8 <1, we get G(z,z,x)<G(z,z,x), which is a contradiction. Thus, F 1 , F 2 , F 3 and g have a unique common fixed point. □

Remark 2.1 Theorem 2.1 extends and improves Theorem 3.2 of Shatanawi [26].

The following corollary can be obtained from Theorem 2.1 immediately.

Corollary 2.1 Let (X,G) be a G-metric space. Let F 1 , F 2 , F 3 :X×XX and g:XX be mappings such that

G ( F 1 ( x , y ) , F 2 ( u , v ) , F 3 ( w , z ) ) a 1 G(gx,gu,gw)+ a 2 G(gy,gv,gz)
(2.13)

for all x,y,u,v,w,zX, where a i 0, i=1,2 and a 1 + a 2 <1. Suppose that F 1 , F 2 , F 3 and g satisfy the following conditions:

  1. (1)

    F 1 (X×X)gX, F 2 (X×X)gX, F 2 (X×X)gX;

  2. (2)

    gX is G-complete;

  3. (3)

    g is G-continuous and commutes with F 1 , F 2 , F 3 .

Then there exist unique xX such that

gx= F 1 (x,x)= F 2 (x,x)= F 3 (x,x)=x.

Remark 2.2 If F 1 (x,y)= F 2 (x,y)= F 3 (x,y) and a 1 = a 2 =k, then Corollary 2.1 is reduced to Theorem 3.2 of Shatanawi [26].

Now, we give an example to support Corollary 2.1.

Example 2.1 Let X=[0,1]. Define G:X×X×X R + by

G(x,y,z)=|xy|+|yz|+|zx|

for all x,y,zX. Then (X,G) is a complete G-metric space. Define a map

F 1 , F 2 , F 3 :X×XX

by

F 1 (x,y)= F 2 (x,y)= F 3 (x,y)= x + y 8

for all x,yX. Also, define g:XX by gx= x 2 for xX. Then F(X×X)gX. Through calculation, we have

G ( F 1 ( x , y ) , F 2 ( u , v ) , F 3 ( w , z ) ) G ( x + y 8 , u + v 8 , w + z 8 ) = 1 8 ( | x u + y v | + | u w + v z | + | w x + z y | ) 1 8 ( | x u | + | y v | + | u w | + | v z | + | w x | + | z y | ) = 1 4 ( G ( g x , g u , g w ) + G ( g y , g v , g z ) ) .

Then the mappings F 1 , F 2 , F 3 and g are satisfying condition (2.13) of Corollary 2.1 with a 1 = a 2 = 1 4 . So that all the conditions of Corollary 2.1 are satisfied. By Corollary 2.4, F 1 , F 2 , F 3 and g have a unique common fixed point. Moreover, 0 is the unique common fixed point for all of the mappings F 1 , F 2 , F 3 and g.

If a 1 = a 2 =0, then Theorem 2.1 is reduced to the following.

Corollary 2.2 Let (X,G) be a G-metric space. Let F 1 , F 2 , F 3 :X×XX and g:XX be four mappings such that

G ( F 1 ( x , y ) , F 2 ( u , v ) , F 3 ( w , z ) ) c 1 G ( g x , g u , g u ) + c 2 G ( g y , g v , g v ) + c 3 G ( g u , g w , g w ) + c 4 G ( g v , g z , g z ) + c 5 G ( g w , g x , g x ) + c 6 G ( g z , g y , g y )
(2.14)

for all x,y,u,v,w,zX, where c i 0, i=1,2,,6 and c 1 + c 2 +2 c 3 +2 c 4 + c 5 + c 6 <1. Suppose that F 1 , F 2 , F 3 and g satisfy the following conditions:

  1. (i)

    F 1 (X×X)gX, F 2 (X×X)gX, F 3 (X×X)gX;

  2. (ii)

    gX is G-complete;

  3. (iii)

    g is G-continuous and commutes with F 1 , F 2 , F 3 .

Then there exist unique xX such that

gx= F 1 (x,x)= F 2 (x,x)= F 3 (x,x)=x.

If we take F 1 (x,y)= F 2 (x,y)= F 3 (x,y) in Corollary 2.2, then the following corollary is obtained.

Corollary 2.3 Let (X,G) be a G-metric space. Let F:X×XX and g:XX be four mappings such that

G ( F ( x , y ) , F ( u , v ) , F ( w , z ) ) c 1 G ( g x , g u , g u ) + c 2 G ( g y , g v , g v ) + c 3 G ( g u , g w , g w ) + c 4 G ( g v , g z , g z ) + c 5 G ( g w , g x , g x ) + c 6 G ( g z , g y , g y )
(2.15)

for all x,y,u,v,w,zX, where c i 0, i=1,2,,6 and c 1 + c 2 +2 c 3 +2 c 4 + c 5 + c 6 <1. Suppose that F and g satisfy the following conditions:

  1. (i)

    F(X×X)gX;

  2. (ii)

    gX is G-complete;

  3. (iii)

    g is G-continuous and commutes with F.

Then there exist unique xX such that

gx=F(x,x)=x.

Now, we give an example to support Corollary 2.3.

Example 2.2 Let X=[0,1]. Define G:X×X×X R + by

G(x,y,z)=|xy|+|yz|+|zx|

for all x,y,zX. Then (X,G) is a complete G-metric space. Define a map F:X×XX by

F(x,y)= x y 8

for all x,yX. Also, define g:XX by gx=x for xX. Then F(X×X)gX. Through calculation, we have

G ( F ( x , y ) , F ( u , v ) , F ( w , z ) ) = 1 8 ( | x y u v | + | u v w z | + | w z x y | ) 1 8 ( | y | | x u | + | u | | y v | + | v | | u w | + | w | | v z | + | z | | w x | + | x | | z y | ) 1 8 ( | x u | + | y v | + | u w | + | v z | + | w x | + | z y | ) = 1 16 ( G ( g x , g u , g u ) + G ( g y , g v , g v ) + G ( g u , g w , g w ) + G ( g v , g z , g z ) + G ( g w , g x , g x ) + c 6 G ( g z , g y , g y ) ) .

Then the mappings F 1 , F 2 , F 3 and g are satisfying condition (2.15) of Corollary 2.3 with c 1 = c 2 = c 3 = c 4 = c 5 = c 6 = 1 16 . So that all the conditions of Corollary 2.3 are satisfied. By Corollary 2.3, F and g have a unique common fixed point. Moreover, 0 is the unique common fixed point for all of the mappings F and g.

If we take F 1 (x,y)= F 2 (x,y)= F 3 (x,y) in Theorem 2.1, then the following corollary is obtained.

Corollary 2.4 Let (X,G) be a G-metric space. Let F:X×XX and g:XX be mappings such that

G ( F ( x , y ) , F ( u , v ) , F ( w , z ) ) a 1 G ( g x , g u , g w ) + a 2 G ( g y , g v , g z ) + a 3 G ( g x , g u , g u ) + a 4 G ( g y , g v , g v ) + a 5 G ( g u , g w , g w ) + a 6 G ( g v , g z , g z ) + a 7 G ( g w , g x , g x ) + a 8 G ( g z , g y , g y )
(2.16)

for all x,y,u,v,w,zX, where a i 0, i=1,2,,8 and a 1 + a 2 + a 3 + a 4 +2 a 5 +2 a 6 + a 7 + a 8 <1. Suppose that F and g satisfy the following conditions:

  1. (1)

    F(X×X)gX;

  2. (2)

    gX is G-complete;

  3. (3)

    g is G-continuous and commutes with F.

Then there exist unique xX such that gx=F(x,x)=x.

Now, we introduce an example to support Corollary 2.4.

Example 2.3 Let X=[1,1]. Define G:X×X×X R + by

G(x,y,z)=|xy|+|yz|+|zx|

for all x,y,zX. Then (X,G) is a complete G-metric space. Define a map

F:X×XX

by

F(x,y)= 1 16 x 2 + 1 16 y 2 1

for all x,yX. Also, define g:XX by gx=x for xX.

Clearly, we can get F(X×X)=[1, 7 8 ]gX, and g is G-continuous and commutes with F.

By the definition of the mappings of F and g, for all x,y,z,u,v,w[1,1], we have

G ( F ( x , y ) , F ( u , v ) , F ( w , z ) ) G ( 1 16 x 2 + 1 16 y 2 1 , 1 16 u 2 + 1 16 v 2 1 , 1 16 w 2 + 1 16 z 2 1 ) = 1 16 ( | x 2 u 2 + y 2 v 2 | + | u 2 w 2 + v 2 z 2 | + | w 2 x 2 + z 2 y 2 | ) 1 16 ( | x 2 u 2 | + | y 2 v 2 | + | u 2 w 2 | + | v 2 z 2 | + | w 2 x 2 | + | z 2 y 2 | ) 1 16 ( 2 | x u | + 2 | y v | + 2 | u w | + 2 | v z | + 2 | w x | + 2 | z y | ) = 1 16 G ( g x , g u , g u ) + 1 16 G ( g y , g v , g v ) + 1 16 G ( g u , g w , g w ) + 1 16 G ( g v , g z , g z ) + 1 16 G ( g w , g x , g x ) + 1 16 G ( g z , g y , g y ) .

Then the mappings F and g are satisfying condition (2.16) of Corollary 2.4 with a 1 = a 2 =0, a 3 = a 4 = a 5 = a 6 = a 7 = a 8 = 1 16 . So that all the conditions of Corollary 2.4 are satisfied. By Corollary 2.4, F and g have a unique common fixed point. Here x=42 6 is the unique common fixed point of mappings F and g; that is, F(x,x)=gx=x.

3 Application to integral equations

Throughout this section, we assume that X=C[0,1] is the set of all continuous functions defined on [0,1]. Define G:X×X×X R + by

G(x,y,z)= sup t [ 0 , 1 ] |x(t)y(t)|+ sup t [ 0 , 1 ] |y(t)z(t)|+ sup t [ 0 , 1 ] |z(t)x(t)|

for all x,y,zX. Then (X,G) is a G-complete metric space.

Consider the following integral equations:

F i (x,y)(t)= 0 1 k(t,s) ( f i ( s , x ( s ) ) + g i ( s , y ( s ) ) ) ds,t[0,1](i=1,2,3).
(3.1)

Next, we will analyze (3.1) under the following conditions:

  1. (i)

    k:[0,1]×[0,1] R + is continuous.

  2. (ii)

    f i , g i :[0,1]×RR (i=1,2,3) are continuous functions.

  3. (iii)

    There exist constants λ i , μ i >0 (i=1,2,3) such that

    { | f 1 ( t , x ) f 2 ( t , y ) | λ 1 | x y | , | f 2 ( t , x ) f 3 ( t , y ) | λ 2 | x y | , | f 3 ( t , x ) f 1 ( t , y ) | λ 3 | x y | and{ | g 1 ( t , x ) g 2 ( t , y ) | μ 1 | x y | , | g 2 ( t , x ) g 3 ( t , y ) | μ 2 | x y | , | g 3 ( t , x ) g 1 ( t , y ) | μ 3 | x y |

for all t[0,1] and x,yR.

  1. (iv)

    k (max{ λ 1 , μ 1 }+2max{ λ 2 , μ 2 }+max{ λ 3 , μ 3 })<1, where

    k =sup { k ( t , s ) : t , s [ 0 , 1 ] } .

The aim of this section is to give an existence theorem for a solution of the above integral equations by using the obtained result given by Theorem 2.1.

Theorem 3.1 Under conditions (i)-(iv), integral equation (3.1) has a unique common solution in C[0,1].

Proof First, we consider F i :X×XX (i=1,2,3). By virtue of our assumptions, F i is well defined (this means that for x,yX then F i (x,y)X (i=1,2,3)). Then we can get

G ( F 1 ( x , y ) , F 2 ( u , v ) , F 3 ( w , z ) ) = sup t [ 0 , 1 ] | F 1 ( x , y ) F 2 ( u , v ) | + sup t [ 0 , 1 ] | F 2 ( u , v ) F 3 ( w , z ) | + sup t [ 0 , 1 ] | F 3 ( w , z ) F 1 ( x , y ) | = sup t [ 0 , 1 ] | 0 1 k ( t , s ) ( f 1 ( s , x ( s ) ) + g 1 ( s , y ( s ) ) ) d s 0 1 k ( t , s ) ( f 2 ( s , u ( s ) ) + g 2 ( s , v ( s ) ) ) d s | + sup t [ 0 , 1 ] | 0 1 k ( t , s ) ( f 2 ( s , u ( s ) ) + g 2 ( s , v ( s ) ) ) d s 0 1 k ( t , s ) ( f 3 ( s , w ( s ) ) + g 3 ( s , z ( s ) ) ) d s | + sup t [ 0 , 1 ] | 0 1 k ( t , s ) ( f 3 ( s , w ( s ) ) + g 3 ( s , z ( s ) ) ) d s 0 1 k ( t , s ) ( f 1 ( s , x ( s ) ) + g 1 ( s , y ( s ) ) ) d s | = sup t [ 0 , 1 ] | 0 1 k ( t , s ) ( ( f 1 ( s , x ( s ) ) f 2 ( s , u ( s ) ) ) + ( g 1 ( s , y ( s ) ) g 2 ( s , v ( s ) ) ) ) d s | + sup t [ 0 , 1 ] | 0 1 k ( t , s ) ( ( f 2 ( s , u ( s ) ) f 3 ( s , w ( s ) ) ) + ( g 2 ( s , v ( s ) ) g 3 ( s , z ( s ) ) ) ) d s | + sup t [ 0 , 1 ] | 0 1 k ( t , s ) ( ( f 3 ( s , w ( s ) ) f 1 ( s , x ( s ) ) ) + ( g 3 ( s , z ( s ) ) g 1 ( s , y ( s ) ) ) ) d s | sup t [ 0 , 1 ] 0 1 k ( t , s ) ( | f 1 ( s , x ( s ) ) f 2 ( s , u ( s ) ) | + | g 1 ( s , y ( s ) ) g 2 ( s , v ( s ) ) | ) d s + sup t [ 0 , 1 ] 0 1 k ( t , s ) ( | f 2 ( s , u ( s ) ) f 3 ( s , w ( s ) ) | + | g 2 ( s , v ( s ) ) g 3 ( s , z ( s ) ) | ) d s + sup t [ 0 , 1 ] 0 1 k ( t , s ) ( | f 3 ( s , w ( s ) ) f 1 ( s , x ( s ) ) | + | g 3 ( s , z ( s ) ) g 1 ( s , y ( s ) ) | ) d s .
(3.2)

By conditions (iii),

{ | f 1 ( s , x ( s ) ) f 2 ( s , u ( s ) ) | λ 1 | x ( s ) u ( s ) | , | f 2 ( s , u ( s ) ) f 3 ( s , w ( s ) ) | λ 2 | u ( s ) w ( s ) | , | f 3 ( s , w ( s ) ) f 1 ( s , x ( s ) ) | λ 3 | w ( s ) x ( s ) |

and

{ | g 1 ( s , y ( s ) ) g 2 ( s , v ( s ) ) | μ 1 | y ( s ) v ( s ) | , | g 2 ( s , v ( s ) ) g 3 ( s , z ( s ) ) | μ 2 | v ( s ) z ( s ) | , | g 3 ( s , z ( s ) ) g 1 ( s , y ( s ) ) | μ 3 | z ( s ) y ( s ) | .

Taking these inequalities into (3.2), we obtain

G ( F 1 ( x , y ) , F 2 ( u , v ) , F 3 ( w , z ) ) sup t [ 0 , 1 ] 0 1 k ( t , s ) ( λ 1 | x ( s ) u ( s ) | + μ 1 | y ( s ) v ( s ) | ) d s + sup t [ 0 , 1 ] 0 1 k ( t , s ) ( λ 2 | u ( s ) w ( s ) | + μ 2 | v ( s ) z ( s ) | ) + sup t [ 0 , 1 ] 0 1 k ( t , s ) ( λ 3 | w ( s ) x ( s ) | + μ 3 | z ( s ) y ( s ) | ) max { λ 1 , μ 1 } sup t [ 0 , 1 ] 0 1 k ( t , s ) ( | x ( s ) u ( s ) | + | y ( s ) v ( s ) | ) d s + max { λ 2 , μ 2 } sup t [ 0 , 1 ] 0 1 k ( t , s ) ( | u ( s ) w ( s ) | + | v ( s ) z ( s ) | ) d s + max { λ 3 , μ 3 } sup t [ 0 , 1 ] 0 1 k ( t , s ) ( | w ( s ) x ( s ) | + | z ( s ) y ( s ) | ) d s .
(3.3)

Using the Cauchy-Schwartz inequality in (3.3), we get

0 1 k ( t , s ) ( | x ( s ) u ( s ) | + | y ( s ) v ( s ) | ) d s ( 0 1 k 2 ( t , s ) d s ) 1 2 ( 0 1 ( | x ( s ) u ( s ) | + | y ( s ) v ( s ) | ) 2 d s ) 1 2 k ( sup t [ 0 , 1 ] | x ( t ) u ( t ) | + sup t [ 0 , 1 ] | y ( t ) v ( t ) | ) .
(3.4)

Similarly, we can obtain the following estimate

0 1 k ( t , s ) ( | u ( s ) w ( s ) | + | v ( s ) z ( s ) | ) d s k ( sup t [ 0 , 1 ] | u ( t ) w ( t ) | + sup t [ 0 , 1 ] | v ( t ) z ( t ) | ) ,
(3.5)
0 1 k ( t , s ) ( | w ( s ) x ( s ) | + | z ( s ) y ( s ) | ) d s k ( sup t [ 0 , 1 ] | w ( t ) x ( t ) | + sup t [ 0 , 1 ] | z ( t ) y ( t ) | ) .
(3.6)

Substituting (3.4), (3.5) and (3.6) into (3.3), we obtain that

G ( F 1 ( x , y ) , F 2 ( u , v ) , F 3 ( w , z ) ) max { λ 1 , μ 1 } k ( sup t [ 0 , 1 ] | x ( t ) u ( t ) | + sup t [ 0 , 1 ] | y ( t ) v ( t ) | ) + max { λ 2 , μ 2 } k ( sup t [ 0 , 1 ] | u ( t ) w ( t ) | + sup t [ 0 , 1 ] | v ( t ) z ( t ) | ) + max { λ 3 , μ 3 } k ( sup t [ 0 , 1 ] | w ( t ) x ( t ) | + sup t [ 0 , 1 ] | z ( t ) y ( t ) | ) = 1 2 max { λ 1 , μ 1 } k 2 sup t [ 0 , 1 ] | x ( t ) u ( t ) | + 1 2 max { λ 1 , μ 1 } k 2 sup t [ 0 , 1 ] | y ( t ) v ( t ) | + 1 2 max { λ 2 , μ 2 } k 2 sup t [ 0 , 1 ] | u ( t ) w ( t ) | + 1 2 max { λ 2 , μ 2 } k 2 sup t [ 0 , 1 ] | v ( t ) z ( t ) | + 1 2 max { λ 3 , μ 3 } k 2 sup t [ 0 , 1 ] | w ( t ) x ( t ) | + 1 2 max { λ 3 , μ 3 } k 2 sup t [ 0 , 1 ] | z ( t ) y ( t ) | = 1 2 max { λ 1 , μ 1 } k G ( x , u , u ) + 1 2 max { λ 1 , μ 1 } k G ( y , v , v ) + 1 2 max { λ 2 , μ 2 } k G ( u , w , w ) + 1 2 max { λ 2 , μ 2 } k G ( v , z , z ) + 1 2 max { λ 3 , μ 3 } k G ( w , x , x ) + 1 2 max { λ 3 , μ 3 } k G ( z , y , y ) .
(3.7)

Taking gx=x for all xX, and

a 1 = a 2 = 0 , a 3 = a 4 = 1 2 max { λ 1 , μ 1 } k , a 5 = a 6 = 1 2 max { λ 2 , μ 2 } k , a 7 = a 8 = 1 2 max { λ 3 , μ 3 } k ,

then inequality (3.7) becomes

G ( F 1 ( x , y ) , F 2 ( u , v ) , F 3 ( w , z ) ) a 1 G ( g x , g u , g w ) + a 2 G ( g y , g v , g z ) + a 3 G ( g x , g u , g u ) + a 4 G ( g y , g v , g v ) + a 5 G ( g u , g w , g w ) + a 6 G ( g v , g z , g z ) + a 7 G ( g w , g x , g x ) + a 8 G ( g z , g y , g y ) .
(3.8)

By condition (iv), we know that

a 1 + a 2 + a 3 + a 4 + 2 ( a 5 + a 6 ) + a 7 + a 8 = k ( max { λ 1 , μ 1 } + 2 max { λ 2 , μ 2 } + max { λ 3 , μ 3 } ) < 1 .

This proves that the operator F i (i=1,2,3) and g=I satisfy contractive condition (2.2) appearing in Theorem 2.1 with g=I. Therefore, F 1 , F 2 , F 3 have a unique common coupled fixed point, that is, F 1 (x,x)= F 2 (x,x)= F 3 (x,x)=x, and so, (x,x) is the unique solution of equation (3.1). □