1 Introduction

Assuming that f,g L 2 ( R + ), f= { 0 f 2 ( x ) d x } 1 2 >0, g>0, we have the following Hilbert integral inequality (cf. [1]):

0 0 f ( x ) g ( y ) x + y dxdy<πfg,
(1)

where the constant factor π is best possible. If a= { a n } n = 1 , b= { b n } n = 1 l 2 , a= { n = 1 a n 2 } 1 2 >0, b>0, then we have the following analogous discrete Hilbert inequality:

m = 1 n = 1 a m b n m + n <πab,
(2)

with the same best constant factor π. Inequalities (1) and (2) are important in analysis and its applications (cf. [24]).

In 1998, by introducing an independent parameter λ(0,1], Yang [5] gave an extension of (1). For generalizing the results from [5], Yang [6] gave some best extensions of (1) and (2): If p>1, 1 p + 1 q =1, λ 1 + λ 2 =λ, k λ (x,y) is a non-negative homogeneous function of degree −λ satisfying k( λ 1 )= 0 k λ (t,1) t λ 1 1 dt R + , ϕ(x)= x p ( 1 λ 1 ) 1 , ψ(x)= x q ( 1 λ 2 ) 1 , f(0) L p , ϕ ( R + )={f| f p , ϕ := { 0 ϕ ( x ) | f ( x ) | p d x } 1 p <}, g(0) L q , ψ ( R + ), and f p , ϕ , g q , ψ >0, then

0 0 k λ (x,y)f(x)g(y)dxdy<k( λ 1 ) f p , ϕ g q , ψ ,
(3)

where the constant factor k( λ 1 ) is best possible. Moreover if the value of k λ (x,y) is finite and k λ (x,y) x λ 1 1 ( k λ (x,y) y λ 2 1 ) is decreasing for x>0 (y>0), then for a m , b n 0, a= { a m } m = 1 l p , ϕ ={a| a p , ϕ := { n = 1 ϕ ( n ) | a n | p } 1 p <}, and b= { b n } n = 1 l q , ψ , a p , ϕ , b q , ψ >0, we have

m = 1 n = 1 k λ (m,n) a m b n <k( λ 1 ) a p , ϕ b q , ψ ,
(4)

where the constant k( λ 1 ) is still best value. Clearly, for p=q=2, λ=1, k 1 (x,y)= 1 x + y , λ 1 = λ 2 = 1 2 , (3) reduces to (1), while (4) reduces to (2). The reverses of (3) and (4) as well as the equivalent forms are also considered by [6].

Some other results about integral and discrete Hilbert-type inequalities can be found in [715]. On half-discrete Hilbert-type inequalities with the general non-homogeneous kernels, Hardy et al. provided a few results in Theorem 351 of [1]. But they did not prove that the constant factors are best possible. In 2005, Yang [16] gave a result with the kernel 1 ( 1 + n x ) λ by introducing a variable and proved that the constant factor is best possible. Very recently, Yang [17] and [18] gave the following half-discrete reverse Hilbert inequality with best constant factor: For 0<p<1, 1 p + 1 q =1, λ 1 >0, 0< λ 2 1, λ 1 + λ 2 =λ, θ λ (x)=O( 1 x λ 2 )(0,1), ϕ ˜ (x)=(1 θ λ (x)) x p ( 1 λ 1 ) 1 ,

0 f(x) n = 1 a n ( x + n ) λ dx>B( λ 1 , λ 2 ) f p , ϕ ˜ a q , ψ .
(5)

In this paper, by means of weight functions and the improved Euler-Maclaurin summation formula, a more accurate half-discrete reverse Hilbert-type inequality with the kernel ( min { 1 , ( x γ ) ( n η ) } ) β ( max { 1 , ( x γ ) ( n η ) } ) α similar to (5) and a best constant factor is given. Moreover, some equivalent forms, the dual forms as well as some relating homogeneous cases are also considered.

2 Some lemmas

Lemma 1 If n 0 N, s> n 0 , g 1 (y) (y[ n 0 ,s)), g 2 (y) (y[s,)) are continuous decreasing functions satisfying g 1 ( n 0 ) g 1 (s0)+ g 2 (s)>0, g 2 ()=0, define a function g(y) as follows:

g(y):= { g 1 ( y ) , y [ n 0 , s ) , g 2 ( y ) , y [ s , ) .
(6)

Then there exists ε[0,1], such that

1 8 [ g 1 ( n 0 ) + ε ( g 2 ( s ) g 1 ( s 0 ) ) ] < n 0 ρ ( y ) g ( y ) d y < 1 ε 8 ( g 2 ( s ) g 1 ( s 0 ) ) ,
(7)

where ρ(y)=y[y] 1 2 is the Bernoulli function of the first order. In particular, for g 1 (y)=0, y[ n 0 ,s), we have g 2 (s)>0 and

1 8 g 2 (s)< s ρ(y)g(y)dy< 1 8 g 2 (s);
(8)

for g 2 (y)=0, y[s,), if g 1 (s0)0, then it follows g 1 ( n 0 )>0 and

1 8 g 1 ( n 0 )< n 0 s ρ(y) g 1 (y)dy<0.
(9)

Proof Define a continuous decreasing function g ˜ (y) as follows:

g ˜ (y):= { g 1 ( y ) + g 2 ( s ) g 1 ( s 0 ) , y [ n 0 , s ) , g 2 ( y ) , y [ s , ) .

Then it follows that

n 0 ρ ( y ) g ( y ) d y = n 0 s ρ ( y ) g ( y ) d y + s ρ ( y ) g ( y ) d y n 0 ρ ( y ) g ( y ) d y = n 0 s ρ ( y ) ( g ˜ ( y ) g 2 ( s ) + g 1 ( s 0 ) ) d y + s ρ ( y ) g ˜ ( y ) d y n 0 ρ ( y ) g ( y ) d y = n 0 ρ ( y ) g ˜ ( y ) d y ( g 2 ( s ) g 1 ( s 0 ) ) n 0 s ρ ( y ) d y , n 0 s ρ ( y ) d y = n 0 [ s ] ρ ( y ) d y + [ s ] s ρ ( y ) d y = [ s ] s ( y [ s ] 1 2 ) d y n 0 s ρ ( y ) d y = 1 8 [ 4 ( s [ s ] 1 2 ) 2 1 ] = ε 1 8 ( ε [ 0 , 1 ] ) .

Since g ˜ ( n 0 )= g 1 ( n 0 )+ g 2 (s) g 1 (s0)>0, g ˜ (y) is a non-constant continuous decreasing function with g ˜ ()= g 2 ()=0, by the improved Euler-Maclaurin summation formula (cf. [6], Theorem 2.2.2), it follows that

1 8 ( g 1 ( n 0 ) + g 2 ( s ) g 1 ( s 0 ) ) = 1 8 g ˜ ( n 0 )< n 0 ρ(y) g ˜ (y)dy<0,

and then in view of the above results and by simple calculation, we have (7). □

Lemma 2 If 0<α+β2, γR, η1 α + β 8 (1+ 3 + 4 α + β ), and ω(n) and ϖ(x) are weight functions given by

ω ( n ) : = γ ( min { 1 , ( x γ ) ( n η ) } ) β ( max { 1 , ( x γ ) ( n η ) } ) α ( n η ) α β 2 ( x γ ) 1 α β 2 d x , n N , ϖ ( x ) : = n = 1 ( min { 1 , ( x γ ) ( n η ) } ) β ( max { 1 , ( x γ ) ( n η ) } ) α ( x γ ) α β 2 ( n η ) 1 α β 2 , x > γ ,
(10)

then we have

0< 4 α + β ( 1 θ ( x ) ) <ϖ(x)<ω(n)= 4 α + β ,
(11)
θ(x)= { 1 2 ( 1 η ) α + β 2 ( x γ ) α + β 2 , 0 < x γ 1 1 η , 1 1 2 ( 1 η ) α + β 2 ( x γ ) α + β 2 , x γ > 1 1 η .
(12)

Proof Substituting t=(xγ)(nη) in (10), and by simple calculation, we have

ω(n)= 0 ( min { 1 , t } ) β ( max { 1 , t } ) α t α β 2 1 dt= 0 1 t β + α β 2 1 dt+ 1 t α + α β 2 1 dt= 4 α + β .

For fixed x>γ, we find

h ( x , y ) : = ( x γ ) α β 2 ( min { 1 , ( x γ ) ( y η ) } ) β ( max { 1 , ( x γ ) ( y η ) } ) α ( y η ) α β 2 1 h ( x , y ) = { ( x γ ) α + β 2 ( y η ) α + β 2 1 , η < y < η + 1 x γ , ( x γ ) α + β 2 ( y η ) α + β 2 1 , y η + 1 x γ , h y ( x , y ) = { ( 1 α + β 2 ) ( x γ ) α + β 2 ( y η ) α + β 2 2 , η < y < η + 1 x γ , ( α + β 2 + 1 ) ( x γ ) α + β 2 ( y η ) α + β 2 2 , y η + 1 x γ , η h ( x , y ) d y = t = ( x γ ) ( y η ) 0 ( min { 1 , t } ) β ( max { 1 , t } ) α t α β 2 1 d t = 4 α + β .

By the Euler-Maclaurin summation formula (cf. [6]), it follows that

ϖ ( x ) = n = 1 h ( x , n ) = 1 h ( x , y ) d y + 1 2 h ( x , 1 ) + 1 ρ ( y ) h y ( x , y ) d y ϖ ( x ) = η h ( x , y ) d y R ( x ) = 4 α + β R ( x ) , R ( x ) : = η 1 h ( x , y ) d y 1 2 h ( x , 1 ) 1 ρ ( y ) h y ( x , y ) d y .
(13)
  1. (i)

    For 0<xγ< 1 1 η , we obtain 1 2 h(x,1)= 1 2 ( x γ ) α + β 2 ( 1 η ) α + β 2 1 , and

    η 1 h(x,y)dy= ( x γ ) α + β 2 η 1 ( y η ) α + β 2 1 dy= 2 ( 1 η ) α + β 2 α + β ( x γ ) α + β 2 .

Setting g(y):= h y (x,y), wherefrom g 1 (y)=(1 α + β 2 ) ( x γ ) α + β 2 ( y η ) α + β 2 2 , g 2 (y)=( α + β 2 +1) ( x γ ) α + β 2 ( y η ) α + β 2 2 and

g 2 ( η + 1 x γ ) g 1 ( ( η + 1 x γ ) 0 ) = ( α + β 2 + 1 ) ( x γ ) 2 ( 1 α + β 2 ) ( x γ ) 2 = ( α + β ) ( x γ ) 2 > 0 ,

then by (7), we find

1 ρ ( y ) h y ( x , y ) d y = 1 ρ ( y ) g ( y ) d y > 1 8 [ g 1 ( 1 ) + g 2 ( η + 1 x γ ) g 1 ( ( η + 1 x γ ) 0 ) ] = 1 8 [ ( 1 α + β 2 ) ( x γ ) α + β 2 ( 1 η ) α + β 2 2 + ( α + β ) ( x γ ) 2 ] > 1 8 [ ( 1 α + β 2 ) ( 1 η ) α + β 2 2 ( x γ ) α + β 2 + ( α + β ) ( 1 η ) α + β 2 2 ( x γ ) α + β 2 2 ( x γ ) 2 ] = 1 8 ( 1 + α + β 2 ) ( 1 η ) α + β 2 2 ( x γ ) α + β 2 .

In view of (11) and the above results, since for η1 α + β 8 (1+ 3 + 4 α + β ), namely 1η α + β 8 (1+ 3 + 4 α + β ), it follows that

R ( x ) > 2 α + β ( 1 η ) α + β 2 ( x γ ) α + β 2 1 2 ( x γ ) α + β 2 ( 1 η ) α + β 2 1 1 8 ( 1 + α + β 2 ) ( 1 η ) α + β 2 2 ( x γ ) α + β 2 = [ 2 ( 1 η ) 2 α + β ( 1 η ) 2 2 + α + β 16 ] ( x γ ) α + β 2 ( 1 η ) 2 α + β 2 0 .
  1. (ii)

    For xγ 1 1 η , we obtain 1 2 h(x,1)= 1 2 ( x γ ) α + β 2 ( 1 η ) α + β 2 1 , and

    η 1 h ( x , y ) d y = η η + 1 x γ ( x γ ) α + β 2 ( y η ) 1 α + β 2 d y + η + 1 x γ 1 ( x γ ) α + β 2 ( y η ) α + β 2 + 1 d y = 4 α + β 2 α + β ( 1 η ) α + β 2 ( x γ ) α + β 2 4 ( 1 η ) α + β 2 α + β ( x γ ) α + β 2 2 ( 1 η ) α + β 2 α + β ( x γ ) α + β 2 = 2 α + β ( 1 η ) α + β 2 ( x γ ) α + β 2 .

Since for y1, yη 1 x γ , by the improved Euler-Maclaurin summation formula (cf. [6]), it follows that

1 ρ ( y ) h y ( x , y ) d y = ( α + β 2 + 1 ) ( x γ ) α + β 2 1 ρ ( y ) ( y η ) α + β 2 2 d y > 1 8 ( α + β 2 + 1 ) ( x γ ) α + β 2 ( 1 η ) α + β 2 2 .

In view of (13) and the above results, for 1η α + β 8 (1+ 3 + 4 α + β ), we find

R ( x ) > 2 α + β ( 1 η ) α + β 2 ( x γ ) α + β 2 1 2 ( 1 η ) α + β 2 1 ( x γ ) α + β 2 1 8 ( α + β 2 + 1 ) ( 1 η ) α + β 2 2 ( x γ ) α + β 2 = [ 2 ( 1 η ) 2 α + β 1 η 2 2 + α + β 16 ] ( x γ ) α + β 2 ( 1 η ) 2 + α + β 2 0 .

Hence for x>γ, we have R(x)>0, and then ϖ(x)<ω(n)= 4 α + β .

On the other-hand, since h(x,y) is decreasing with respect to y>η, we find

ϖ ( x ) > 1 ( min { 1 , ( x γ ) ( y η ) } ) β ( max { 1 , ( x γ ) ( y η ) } ) α ( x γ ) α β 2 ( y η ) 1 α β 2 d y = t = ( x γ ) ( y η ) ( 1 η ) ( x γ ) ( min { 1 , t } ) β ( max { 1 , t } ) α t α β 2 1 d t = 4 α + β ( 1 θ ( x ) ) ,

where θ(x):= α + β 4 0 ( 1 η ) ( x γ ) ( min { 1 , t } ) β ( max { 1 , t } ) α t α β 2 1 dt(0,1).

  1. (i)

    For 0<xγ 1 1 η , we obtain

    θ(x)= α + β 4 0 ( 1 η ) ( x γ ) t β + α β 2 1 dt= 1 2 ( 1 η ) α + β 2 ( x γ ) α + β 2 .
  2. (ii)

    For xγ> 1 1 η , it follows that

    θ ( x ) = α + β 4 [ 0 1 t β + α β 2 1 d t + 1 ( 1 η ) ( x γ ) t α + α β 2 1 d t ] = 1 1 2 ( 1 η ) α + β 2 ( x γ ) α + β 2 .

Hence we have (11) and (12). □

Lemma 3 Let the assumptions of Lemma  2 be fulfilled and additionally, let 0<p<1 or p<0, 1 p + 1 q =1, a n 0, nN, f(x) be a non-negative measurable function in (γ,). Then we have the following inequalities:

J : = { n = 1 ( n β ) p ( α β ) 2 1 [ γ ( min { 1 , ( x γ ) ( n η ) } ) β ( max { 1 , ( x γ ) ( n η ) } ) α f ( x ) d x ] p } 1 p J ( 4 α + β ) 1 q { γ ϖ ( x ) ( x γ ) p ( 1 α β 2 ) 1 f p ( x ) d x } 1 p ,
(14)
L 1 : = { γ ( x α ) q ( α β ) 2 1 [ ϖ ( x ) ] q 1 [ n = 1 ( min { 1 , ( x γ ) ( n η ) } ) β a n ( max { 1 , ( x γ ) ( n η ) } ) α ] q d x } 1 q L 1 { 4 α + β n = 1 ( n η ) q ( 1 α β 2 ) 1 a n q } 1 q .
(15)

Proof For 0<p<1, setting k(x,n):= ( min { 1 , ( x γ ) ( n η ) } ) β ( max { 1 , ( x γ ) ( n η ) } ) α , by the reverse Hölder inequality (cf. [19]) and (11), it follows that

[ γ ( min { 1 , ( x γ ) ( n η ) } ) β ( max { 1 , ( x γ ) ( n η ) } ) α f ( x ) d x ] p = { γ k ( x , n ) [ ( x γ ) ( 1 α β 2 ) / q ( n η ) ( 1 α β 2 ) / p f ( x ) ] [ ( n γ ) ( 1 α β 2 ) / p ( x γ ) ( 1 α β 2 ) / q ] d x } p γ k ( x , n ) ( x γ ) ( 1 α β 2 ) ( p 1 ) ( n η ) 1 α β 2 f p ( x ) d x × { γ k ( x , n ) ( n η ) ( 1 α β 2 ) ( q 1 ) ( x γ ) 1 α β 2 d x } p 1 = { ω ( n ) ( n η ) q ( 1 α β 2 ) 1 } p 1 γ k ( x , n ) ( x γ ) ( 1 α β 2 ) ( p 1 ) ( n η ) 1 α β 2 f p ( x ) d x = ( 4 α + β ) p 1 ( n η ) 1 p ( α β ) 2 γ k ( x , n ) ( x γ ) ( 1 α β 2 ) ( p 1 ) ( n η ) 1 α β 2 f p ( x ) d x .

Then by the Lebesgue term by term integration theorem (cf. [20]), we have

J ( 4 α + β ) 1 q { n = 1 γ k ( x , n ) ( x γ ) ( 1 α β 2 ) ( p 1 ) ( n η ) 1 α β 2 f p ( x ) d x } 1 p = ( 4 α + β ) 1 q { γ n = 1 k ( x , n ) ( x γ ) ( 1 α β 2 ) ( p 1 ) ( n η ) 1 α β 2 f p ( x ) d x } 1 p = ( 4 α + β ) 1 q { γ ϖ ( x ) ( x γ ) p ( 1 α β 2 ) 1 f p ( x ) d x } 1 p ,

and then (14) follows. By the reverse Hölder inequality, for q<0, we have

[ n = 1 k ( x , n ) a n ] q = { n = 1 k ( x , n ) [ ( x γ ) ( 1 α β 2 ) / q ( n η ) ( 1 α β 2 ) / p ] [ ( n η ) ( 1 α β 2 ) / p a n ( x γ ) ( 1 α β 2 ) / q ] } q { n = 1 k ( x , n ) ( x γ ) ( 1 α β 2 ) ( p 1 ) ( n η ) 1 α β 2 } q 1 n = 1 k ( x , n ) ( n η ) ( 1 α β 2 ) ( q 1 ) ( x γ ) 1 α β 2 a n q = [ ϖ ( x ) ] q 1 ( x γ ) q ( α β ) 2 1 n = 1 k ( x , n ) ( n η ) ( 1 α β 2 ) ( q 1 ) ( x γ ) 1 α β 2 a n q .

By the Lebesgue term by term integration theorem, we have

L 1 { γ n = 1 k ( x , n ) ( n η ) ( 1 α β 2 ) ( q 1 ) ( x γ ) 1 α β 2 a n q d x } 1 q = { n = 1 γ k ( x , n ) ( n η ) ( 1 α β 2 ) ( q 1 ) ( x γ ) 1 α β 2 a n q d x } 1 q = { n = 1 ω ( n ) ( n η ) q ( 1 α β 2 ) 1 a n q } 1 q ,

and in view of (11), inequality (15) follows. For p<0, by the same way we still have (14) and (15). □

Lemma 4 Let the assumptions of Lemma  2 be fulfilled and additionally, let 0<p<1, 1 p + 1 q =1, 0<ε< p 2 (α+β). Setting f ˜ (x)= ( x γ ) α β 2 + ε p 1 , x(γ,γ+1); f ˜ (x)=0, x[γ+1,), and a ˜ n = ( n η ) α β 2 ε q 1 , nN, then we have

I ˜ : = n = 1 a ˜ n γ ( min { 1 , ( x γ ) ( n η ) } ) β ( max { 1 , ( x γ ) ( n η ) } ) α f ˜ ( x ) d x I ˜ < 1 ε ( α + β ) ( α + β 2 ) 2 ( ε p ) 2 [ ε ( 1 η ) ε + 1 + 1 ( 1 η ) ε ] ,
(16)
H ˜ : = { γ ( x γ ) p ( 1 α β 2 ) 1 f ˜ p ( x ) d x } 1 p { n = 1 ( n η ) q ( 1 α β 2 ) 1 a ˜ n q } 1 q H ˜ > 1 ε ( 1 ε O ( 1 ) ) 1 p { ε ( 1 η ) ε + 1 + 1 ( 1 η ) ε } 1 q .
(17)

Proof We find

I ˜ = n = 1 ( n η ) α β 2 ε q 1 γ γ + 1 ( min { 1 , ( x γ ) ( n η ) } ) β ( max { 1 , ( x γ ) ( n η ) } ) α ( x γ ) α β 2 + ε p 1 d x < n = 1 ( n η ) α β 2 ε q 1 γ ( min { 1 , ( x γ ) ( n η ) } ) β ( max { 1 , ( x γ ) ( n η ) } ) α ( x γ ) α β 2 + ε p 1 d x = α + β ( α + β 2 ) 2 ( ε p ) 2 [ 1 ( 1 η ) ε + 1 + n = 1 1 ( n η ) ε + 1 ] < α + β ( α + β 2 ) 2 ( ε p ) 2 [ 1 ( 1 η ) ε + 1 + 1 d y ( y η ) ε + 1 ] = 1 ε ( α + β ) ( α + β 2 ) 2 ( ε p ) 2 [ ε ( 1 η ) ε + 1 + 1 ( 1 η ) ε ] ,

and then (16) is valid. We obtain

H ˜ = { γ γ + 1 [ 1 1 2 ( 1 η ) α + β 2 ( x γ ) α + β 2 ] ( x γ ) ε 1 d x } 1 p × { 1 ( 1 η ) ε + 1 + n = 2 1 ( n η ) ε + 1 } 1 q > ( 1 ε O ( 1 ) ) 1 p { 1 ( 1 η ) ε + 1 + 1 d y ( y η ) ε + 1 } 1 q = 1 ε ( 1 ε O ( 1 ) ) 1 p { ε ( 1 η ) ε + 1 + 1 ( 1 η ) ε } 1 q ,

and so (17) is valid. □

3 Main results

We introduce the functions

Φ ( x ) : = ( x γ ) p ( 1 α β 2 ) 1 , Φ ˜ ( x ) = ( 1 θ ( x ) ) Φ ( x ) ( x ( γ , ) ) , Ψ ( n ) : = ( n η ) q ( 1 α β 2 ) 1 ( n N ) ,

wherefrom [ Φ ( x ) ] 1 q = ( x γ ) q α β 2 1 , [ Φ ˜ ( x ) ] 1 q = ( 1 θ ( x ) ) 1 q ( x γ ) q α β 2 1 and [ Ψ ( n ) ] 1 p = ( n η ) p α β 2 1 .

Theorem 1 If 0<α+β2, γR, η1 α + β 8 (1+ 3 + 4 α + β ), 0<p<1, 1 p + 1 q =1, f(x), a n 0, f L p , Φ ˜ (γ,), a= { a n } n = 1 l q , Ψ , f p , Φ ˜ >0 and a q , Ψ >0, then we have the following equivalent inequalities:

I : = n = 1 a n γ ( min { 1 , ( x γ ) ( n η ) } ) β ( max { 1 , ( x γ ) ( n η ) } ) α f ( x ) d x I = γ f ( x ) n = 1 ( min { 1 , ( x γ ) ( n η ) } ) β a n ( max { 1 , ( x γ ) ( n η ) } ) α d x > 4 α + β f p , Φ ˜ a q , Ψ ,
(18)
J= { n = 1 [ Ψ ( n ) ] 1 p [ γ ( min { 1 , ( x γ ) ( n η ) } ) β f ( x ) ( max { 1 , ( x γ ) ( n η ) } ) α d x ] p } 1 p > 4 α + β f p , Φ ˜ ,
(19)
L:= { γ [ Φ ˜ ( x ) ] 1 q [ n = 1 ( min { 1 , ( x γ ) ( n η ) } ) β a n ( max { 1 , ( x γ ) ( n η ) } ) α ] q d x } 1 q > 4 α + β a q , Ψ ,
(20)

where the constant 4 α + β is the best possible in the above inequalities.

Proof The two expressions for I in (18) follow from Lebesgue’s term by term integration theorem. By (14) and (11), we have (19). By the reverse Hölder inequality, we have

I= n = 1 [ Ψ 1 q ( n ) γ ( min { 1 , ( x γ ) ( n η ) } ) β f ( x ) ( max { 1 , ( x γ ) ( n η ) } ) α d x ] [ Ψ 1 q ( n ) a n ] J a q , Ψ .

Then by (19), we have (18). On the other-hand, assume that (18) is valid. Setting

a n := [ Ψ ( n ) ] 1 p [ γ ( min { 1 , ( x γ ) ( n η ) } ) β f ( x ) ( max { 1 , ( x γ ) ( n η ) } ) α d x ] p 1 ,nN,

it follows that J p 1 = a q , Ψ . By (14), we find J>0. If J=, then (19) is trivially valid; if J<, then by (18), we have

a q , Ψ q = J q ( p 1 ) = J p =I> 4 α + β f p , Φ ˜ a q , Ψ ,

therefore a q , Ψ q 1 =J> 4 α + β f p , Φ ˜ , that is, (19) is equivalent to (18). On the other-hand, by (11) we have [ ϖ ( x ) ] 1 q > ( 1 θ ( x ) ) 1 q ( 4 α + β ) 1 q . Then in view of (15), we have (20). By the Hölder inequality, we find

I= γ [ Φ ˜ 1 p ( x ) f ( x ) ] [ Φ ˜ 1 p ( x ) n = 1 ( min { 1 , ( x γ ) ( n η ) } ) β a n ( max { 1 , ( x γ ) ( n η ) } ) α ] dx f p , Φ ˜ L.

Then by (20), we have (18). On the other-hand, assume that (18) is valid. Setting

f(x):= [ Φ ˜ ( x ) ] 1 q [ n = 1 ( min { 1 , ( x γ ) ( n η ) } ) β a n ( max { 1 , ( x γ ) ( n η ) } ) α ] q 1 ,x(γ,),

then L q 1 = f p , Φ ˜ . By (15), we find L>0. If L=, then (20) is trivially valid; if L<, then by (18), we have

f p , Φ ˜ p = L p ( q 1 ) =I> 4 α + β f p , Φ ˜ a q , Ψ ,

therefore f p , Φ ˜ p 1 =L> 4 α + β a q , Ψ , that is, (20) is equivalent to (18). Hence, (18), (19), and (20) are equivalent.

If there exists a positive number k ( 4 α + β ), such that (18) is valid as we replace 4 α + β with k, then in particular, it follows that I ˜ >k H ˜ . In view of (16) and (17), we have

( α + β ) ( α + β 2 ) 2 ( ε p ) 2 [ ε ( 1 η ) ε + 1 + 1 ( 1 η ) ε ] >k ( 1 ε O ( 1 ) ) 1 p { ε ( 1 η ) ε + 1 + 1 ( 1 η ) ε } 1 q ,

and 4 α + β k (ε 0 + ). Hence k= 4 α + β is the best value of (18).

By the equivalence of the inequalities, the constant factor 4 α + β in (19) and (20) is the best possible. □

For p<0, we have the dual forms of (18), (19), and (20) as follows:

Theorem 2 If 0<α+β2, γR, η1 α + β 8 (1+ 3 + 4 α + β ), p<0, 1 p + 1 q =1, f(x), a n 0, f L p , Φ (γ,), a= { a n } n = 1 l q , Ψ , f p , Φ >0 and a q , Ψ >0, then we have the following equivalent inequalities:

n = 1 a n γ ( min { 1 , ( x γ ) ( n η ) } ) β ( max { 1 , ( x γ ) ( n η ) } ) α f(x)dx> 4 α + β f p , Φ a q , Ψ ,
(21)
{ n = 1 [ Ψ ( n ) ] 1 p [ γ ( min { 1 , ( x γ ) ( n η ) } ) β f ( x ) ( max { 1 , ( x γ ) ( n η ) } ) α d x ] p } 1 p > 4 α + β f p , Φ ,
(22)
{ γ [ Φ ( x ) ] 1 q [ n = 1 ( min { 1 , ( x γ ) ( n η ) } ) β a n ( max { 1 , ( x γ ) ( n η ) } ) α ] q d x } 1 q > 4 α + β a q , Ψ ,
(23)

where the constant 4 α + β is the best possible in the above inequalities.

Proof By means of Lemma 3 and the same way, we can prove that (21), (22), and (23) are valid and equivalent. For 0<ε | p | 2 (α+β), setting f ˜ (x) and a ˜ n as Lemma 4, if there exists a positive number k ( 4 α + β ), such that (21) is valid as we replace 4 α + β with k, then in particular, by (16), it follows that

α + β ( α + β 2 ) 2 ( ε p ) 2 [ ε ( 1 η ) ε + 1 + 1 ( 1 η ) ε ] > ε I ˜ > ε k { γ γ + 1 ( x γ ) ε 1 d x } 1 p { n = 1 1 ( n η ) ε + 1 } 1 q > ε k ( 1 ε ) 1 p { 1 d y ( y η ) ε + 1 } 1 q = k { 1 ( 1 η ) ε } 1 q ,

and 4 α + β k (ε 0 + ). Hence k= 4 α + β is the best value of (21). By the equivalence of the inequalities, the constant factor 4 α + β in (21) and (22) is the best possible. □

Remark (i) Since we find

min 0 < α + β 2 { 1 α + β 8 ( 1 + 3 + 4 α + β ) } = 3 5 4 = 0.19 + >0,

then for η=γ=0 in (18), we have

θ 0 (x)= { 1 2 x α + β 2 , 0 < x 1 , 1 1 2 x α + β 2 , x > 1 ,

and the following inequality:

n = 1 a n 0 ( min { 1 , x n } ) β ( max { 1 , x n } ) α f ( x ) d x > 4 α + β { 0 ( 1 θ 0 ( x ) ) x p ( 1 α β 2 ) 1 f p ( x ) d x } 1 p { n = 1 n q ( 1 α β 2 ) 1 a n q } 1 q .
(24)

Hence (18) is a more accurate inequality of (24).

  1. (ii)

    For β=0 in (18), we have 0<α2, γR, η1 α 8 (1+ 3 + 4 α ),

    θ 1 (x)= { 1 2 ( x γ ) α 2 , 0 < x γ 1 1 η , 1 1 2 ( x γ ) α 2 , x γ > 1 1 η

and the following inequality:

n = 1 a n γ f ( x ) d x ( max { 1 , ( x γ ) ( n η ) } ) α > 4 α { γ ( 1 θ 1 ( x ) ) ( x γ ) p ( 1 α 2 ) 1 f p ( x ) d x } 1 p { n = 1 ( n η ) q ( 1 α 2 ) 1 a n q } 1 q ;
(25)

for α=0 in (18), we have 0<β2, γR, η1 β 8 (1+ 3 + 4 β ),

θ 2 (x)= { 1 2 ( x γ ) β 2 , 0 < x γ 1 1 η , 1 1 2 ( x γ ) β 2 , x γ > 1 1 η

and the following inequality:

n = 1 a n γ ( min { 1 , ( x γ ) ( n η ) } ) β f ( x ) d x > 4 β { γ ( 1 θ 2 ( x ) ) ( x γ ) p ( 1 + β 2 ) 1 f p ( x ) d x } 1 p { n = 1 ( n η ) q ( 1 + β 2 ) 1 a n q } 1 q ;
(26)

for β=α=λ in (18), we have 0<λ1, γR, η1 λ 4 (1+ 3 + 2 λ ),

θ 3 (x)= { 1 2 ( x γ ) λ , 0 < x γ 1 1 η , 1 1 2 ( x γ ) λ , x γ > 1 1 η

and the following inequality:

n = 1 a n γ [ min { 1 , ( x γ ) ( n η ) } max { 1 , ( x γ ) ( n η ) } ] λ f ( x ) d x > 2 λ { γ ( 1 θ 3 ( x ) ) ( x γ ) p 1 f p ( x ) d x } 1 p { n = 1 ( n η ) q 1 a n q } 1 q .
(27)
  1. (iii)

    Setting y= 1 x γ +γ, g(y)= ( y γ ) α β 2 f( 1 y γ +γ), φ(y)= ( y γ ) p ( 1 α β 2 ) 1 and φ ˜ (y)=(1θ( 1 y γ +γ))φ(y) in (18), by simplification, we obtain the following inequality with the homogeneous kernel:

    n = 1 a n γ ( min { y γ , n η } ) β ( max { y γ , n η } ) α g(y)dy> 4 α + β g p , φ ˜ a q , Ψ .
    (28)

It is evident that (28) is equivalent to (18), and then the same constant factor 4 α + β in (28) is still the best possible. In the same way, we can find the following inequalities equivalent to (28) with the same best possible constant factor 4 α + β :

{ n = 1 [ Ψ ( n ) ] 1 p [ γ ( min { y γ , n η } ) β g ( y ) ( max { y γ , n η } ) α d y ] p } 1 p > 4 α + β f p , φ ˜ ,
(29)
{ γ [ φ ˜ ( y ) ] 1 q [ n = 1 ( min { y γ , n η } ) β a n ( max { y γ , n η } ) α ] q d y } 1 q > 4 α + β a q , Ψ .
(30)
  1. (iv)

    Applying the same way in Theorem 2, we still can obtain some particular dual forms as (i) and (ii) and some equivalent inequalities similar to (28), (29), and (30).