Skip to main content

Advertisement

Log in

Augmented Repair and Regeneration of Critical Size Rabbit Calvaria Defects with 3D Printed Silk Fibroin Microfibers Reinforced PCL Composite Scaffolds

  • Original Article
  • Published:
Biomedical Materials & Devices Aims and scope Submit manuscript

Abstract

Treatment of critical size defects is quite challenging, often requiring autologous bone grafts for bone regeneration. A massive volume of autologous bone is essential during this process to fill the defect leading to donor site morbidity. Although 3D printed PCL scaffolds are frequently utilised for bone correction procedures, there have been reports of delayed PCL biodegradation and inadequate bone tissue formation. To enhance the regenerative potential, in this study, silk in the form of silk fibroin microfibers are reinforced into the PCL matrix to form the composite. Two silk variations were used: Antheraea mylitta and Bombyx mori, and has been proven to promote cell proliferation, adhesion, and osteogenic potential. This work creates 8 mm critical size defects in a rabbit calvaria model to test for the first time ever the ability of 3D printed PCL-silk scaffolds to regenerate bone tissue. Micro-CT imaging and histological examination performed 6 and 12 weeks after implantation revealed that the PCL-silk scaffold-augmented defects considerably outgrew their PCL-scaffold-only counterparts and the control group in terms of neo-bone formation. By 6 weeks, PCL-silk scaffolds had 47.4–50.3% of bone growth that was twice as high as PCL scaffolds alone (16.7–19.9%). Similarly, by 12 weeks, the PCL-silk group had four times more (80–87.3%) new bone tissue production than the PCL group (18.6–22.4%). The promise of silk fibroin-reinforced PCL biomaterial for pre-clinical and clinical studies for craniofacial reconstructive applications is thus supported by these results.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The raw data required to reproduce these findings are available at authors and can be shared upon request.

References

  1. T. Guda et al., Methods to analyze bone regenerative response to different rhBMP-2 doses in rabbit craniofacial defects. Tissue Eng. Part C Methods 20(9), 749–760 (2014). https://doi.org/10.1089/ten.tec.2013.0581

    Article  CAS  Google Scholar 

  2. M.Y. Yen-Hong Lin, Y.C. Chiu, Y.F. Shen, Y.H. Andrew Wu, Shie, Bioactive calcium silicate/poly-ε-caprolactone composite scaffolds 3D printed under mild conditions for bone tissue engineering. J. Mater. Sci: Mater. Med. 29(11), 1–13 (2018). https://doi.org/10.1007/s10856-017-6020-6

    Article  CAS  Google Scholar 

  3. Y.C. Chiu, H.Y. Fang, T.T. Hsu, C.Y. Lin, M.Y. Shie, The characteristics of mineral trioxide aggregate/polycaprolactone 3-dimensional Scaffold with osteogenesis properties for tissue regeneration. J. Endod. 43(6), 923–929 (2017). https://doi.org/10.1016/j.joen.2017.01.009

    Article  Google Scholar 

  4. D. Steffens et al., 3D-printed PCL scaffolds for the cultivation of mesenchymal stem cells. J. Appl. Biomater. Funct. Mater. 14(1), e19–e25 (2016). https://doi.org/10.5301/jabfm.5000252

    Article  CAS  Google Scholar 

  5. J.S. Park et al., Fabrication and characterization of 3D-printed bone-like β-tricalcium phosphate/polycaprolactone scaffolds for dental tissue engineering. J. Ind. Eng. Chem. 46, 175–181 (2017). https://doi.org/10.1016/j.jiec.2016.10.028

    Article  CAS  Google Scholar 

  6. C. Murphy, K. Kolan, W. Li, J. Semon, D. Day, M. Leu, 3D bioprinting of stem cells and polymer/bioactive glass composite scaffolds for bone tissue engineering. Int. J. Bioprint. 3(1), 54–64 (2017). https://doi.org/10.18063/IJB.2017.01.005

    Article  CAS  Google Scholar 

  7. N.A. For, M. Devices, M. L., A.-E. K. N., P.-G. A. J. Flores-Cedillo, Multiwall carbon nanotubes / polycaprolactone scaffolds seeded with human dental pulp stem cells for bone tissue regeneration. J. Mater. Sci.: Mater. Med. 27(35), 1–12 (2016). https://doi.org/10.1007/s10856-015-5640-y

    Article  CAS  Google Scholar 

  8. S.D. Stanislav Evlashin, P. Dyakonov, S.K. Mikhail Tarkhov, S. Rodionov, A. Shpichka, M. Kostenko, P. Timashev, I. Akhatov, I. Sergeichev, Flexible polycaprolactone and polycaprolactone / graphene scaffolds for tissue engineering. Materials 12(2991), 1–11 (2019). https://doi.org/10.3390/ma12182991

    Article  CAS  Google Scholar 

  9. A. Seyedsalehi, L. Daneshmandi, M. Barajaa, J. Riordan, C.T. Laurencin, Fabrication and characterization of mechanically competent 3D printed polycaprolactone—reduced graphene oxide scaffolds. Sci. Rep. (2020). https://doi.org/10.1038/s41598-020-78977-w

    Article  Google Scholar 

  10. B. Yuan et al., In vitro and in vivo study of a novel nanoscale demineralized bone matrix coated PCL/β-TCP scaffold for bone regeneration. Macromol. Biosci. (2021). https://doi.org/10.1002/mabi.202000336

    Article  Google Scholar 

  11. S.F. Hashemi, M. Mehrabi, A. Ehterami, A.M. Gharravi, F.S. Bitaraf, M. Salehi, In-vitro and in-vivo studies of PLA / PCL / gelatin composite scaffold containing ascorbic acid for bone regeneration. J. Drug Deliv. Sci. Technol. (2021). https://doi.org/10.1016/j.jddst.2020.102077

    Article  Google Scholar 

  12. J. Henkel et al., Bone regeneration based on tissue engineering conceptions-a 21st century perspective. Bone Res. 1, 216–248 (2013). https://doi.org/10.4248/BR201303002

    Article  CAS  Google Scholar 

  13. L. Moroni, A. Nandakumar, F.B. de Groot, C.A. van Blitterswijk, P. Habibovic, Plug and play: combining materials and technologies to improve bone regenerative strategies. J. Tissue Eng. Regen. Med. 9(7), 745–759 (2015). https://doi.org/10.1002/term.1762

    Article  CAS  Google Scholar 

  14. L. Moroni, D. Hamann, L. Paoluzzi, J. Pieper, J.R. de Wijn, C.A. van Blitterswijk, Regenerating articular tissue by converging technologies. PLoS One (2008). https://doi.org/10.1371/journal.pone.0003032

    Article  Google Scholar 

  15. E.P.E. Silva et al., In vivo study of conductive 3D printed PCL/MWCNTs scaffolds with electrical stimulation for bone tissue engineering. Biodes. Manuf. 4(2), 190–202 (2021). https://doi.org/10.1007/s42242-020-00116-1

    Article  CAS  Google Scholar 

  16. S.A. Park et al., In vivo evaluation of 3D-printed polycaprolactone scaffold implantation combined with β-TCP powder for alveolar bone augmentation in a beagle defect model. Materials (2018). https://doi.org/10.3390/ma11020238

    Article  Google Scholar 

  17. M. Shahrezaee, M. Salehi, S. Keshtkari, A. Oryan, A. Kamali, B. Shekarchi, In vitro and in vivo investigation of PLA/PCL scaffold coated with metformin-loaded gelatin nanocarriers in regeneration of critical-sized bone defects. Nanomedicine 14(7), 2061–2073 (2018). https://doi.org/10.1016/j.nano.2018.06.007

    Article  CAS  Google Scholar 

  18. S.S.R. Bojedla et al., Three-dimensional printing of customized scaffolds with polycaprolactone-silk fibroin composites and integration of gingival tissue-derived stem cells for personalized bone therapy. ACS Appl. Bio. Mater. 5(9), 4465–4479 (2022). https://doi.org/10.1021/acsabm.2c00560

    Article  CAS  Google Scholar 

  19. P.S. Gomes, M.H. Fernandes, Rodent models in bone-related research: the relevance of calvarial defects in the assessment of bone regeneration strategies. Lab. Anim. 45(1), 14–24 (2011). https://doi.org/10.1258/la.2010.010085

    Article  CAS  Google Scholar 

  20. H. Lee, C.H. Jang, G.H. Kim, A polycaprolactone/silk-fibroin nanofibrous composite combined with human umbilical cord serum for subacute tympanic membrane perforation; an in vitro and in vivo study. J. Mater. Chem. B 2(18), 2703–2713 (2014). https://doi.org/10.1039/c4tb00213j

    Article  CAS  Google Scholar 

  21. S.S.R. Bojedla, S. Chameettachal, S. Yeleswarapu, M. Nikzad, S.H. Masood, F. Pati, Silk fibroin microfiber-reinforced polycaprolactone composites with enhanced biodegradation and biological characteristics. J. Biomed. Mater. Res. A 110(7), 1386–1400 (2022). https://doi.org/10.1002/jbm.a.37380

    Article  CAS  Google Scholar 

  22. S.S.R. Bojedla et al., Three-dimensional printing of customized scaffolds with polycaprolactone-silk fibroin composites and integration of gingival tissue-derived stem cells for personalized bone therapy. ACS Appl. Bio. Mater. (2022). https://doi.org/10.1021/acsabm.2c00560

    Article  Google Scholar 

  23. F. Mottaghitalab, H. Hosseinkhani, M.A. Shokrgozar, C. Mao, M. Yang, M. Farokhi, Silk as a potential candidate for bone tissue engineering. J. Control. Release 215, 112–128 (2015). https://doi.org/10.1016/j.jconrel.2015.07.031

    Article  CAS  Google Scholar 

  24. M. Farokhi et al., Silk fibroin/hydroxyapatite composites for bone tissue engineering. Biotechnol. Adv. 36(1), 68–91 (2018). https://doi.org/10.1016/j.biotechadv.2017.10.001

    Article  CAS  Google Scholar 

  25. S. Miyamoto et al., Bombyx mori silk fibroin scaffolds for bone regeneration studied by bone differentiation experiment. J. Biosci. Bioeng. 115(5), 575–578 (2013). https://doi.org/10.1016/j.jbiosc.2012.11.021

    Article  CAS  Google Scholar 

  26. M. Xu, X. Zhang, S. Meng, X. Dai, B. Han, X. Deng, Enhanced critical size defect repair in rabbit mandible by electrospun gelatin/β-TCP composite nanofibrous membranes. J. Nanomater. (2015). https://doi.org/10.1155/2015/396916

    Article  Google Scholar 

  27. S.H. Jegal et al., Functional composite nanofibers of poly(lactide-co-caprolactone) containing gelatin-apatite bone mimetic precipitate for bone regeneration. Acta Biomater. 7(4), 1609–1617 (2011). https://doi.org/10.1016/j.actbio.2010.12.003

    Article  CAS  Google Scholar 

  28. S. Wang et al., Tuning pore features of mineralized collagen/PCL scaffolds for cranial bone regeneration in a rat model. Mater. Sci. Eng. C (2020). https://doi.org/10.1016/j.msec.2019.110186

    Article  Google Scholar 

  29. F. Pati, T.H. Song, G. Rijal, J. Jang, S.W. Kim, D.W. Cho, Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration. Biomaterials 37, 230–241 (2015). https://doi.org/10.1016/j.biomaterials.2014.10.012

    Article  CAS  Google Scholar 

  30. N. Saulacic, M. Fujioka-Kobayashi, Y. Kimura, A.I. Bracher, C. Zihlmann, N.P. Lang, The effect of synthetic bone graft substitutes on bone formation in rabbit calvarial defects. J. Mater. Sci. Mater. Med. (2021). https://doi.org/10.1007/s10856-020-06483-6

    Article  Google Scholar 

  31. O.P. Lappalainen et al., Micro-CT analysis of bone healing in rabbit calvarial critical-sized defects with solid bioactive glass, tricalcium phosphate granules or autogenous bone. J. Oral Maxillofac. Res. (2016). https://doi.org/10.5037/jomr.2016.7204

    Article  Google Scholar 

  32. C.A.Y. Takauti, F. Futema, R.B. de Brito Junior, A.C. Abrahao, C. Costa, C.S. Queiroz, Assessment of bone healing in rabbit calvaria grafted with three different biomaterials. Braz. Dent. J. 25(5), 379–384 (2014). https://doi.org/10.1590/0103-6440201302383

    Article  Google Scholar 

  33. S. Viguet-Carrin, P. Garnero, P.D. Delmas, The role of collagen in bone strength. Osteoporos. Int. 17(3), 319–336 (2006). https://doi.org/10.1007/s00198-005-2035-9

    Article  CAS  Google Scholar 

  34. P. Bhattacharjee et al., Silk scaffolds in bone tissue engineering: an overview. Acta Biomaterialia. 63, 1–17 (2017). https://doi.org/10.1016/j.actbio.2017.09.027

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledgement Dr. Jerald Mehesh Kumar, Principal scientist, CSIR-CCMB, India for the pathological interpretation.

Funding

The authors would like to acknowledge the financial support from Department of Science and Technology, Ministry of Science and Technology, Govt. of India under the FIST program (SR/FST/LSI-683/2016(C)).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SSRB, FP, VK; Methodology: SSRB; Validation: SSRB, VK, AMA; Investigation: SSRB; Writing—original draft preparation: SSRB; Writing—review and editing: MN, SHM, SR, FP; Visualization: SSRB, VK, AMA; Supervision: FP; Project administration & funding acquisition: FP. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Falguni Pati.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

Animal selection, supervision, preparation, and surgical protocol, were set based on the routines approved by the Jeeva Life Sciences, Hyderabad, India (Reference no. IAEC/JLS/16/07/21/38).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bojedla, S.S.R., Kattimani, V., Alwala, A.M. et al. Augmented Repair and Regeneration of Critical Size Rabbit Calvaria Defects with 3D Printed Silk Fibroin Microfibers Reinforced PCL Composite Scaffolds. Biomedical Materials & Devices 1, 942–955 (2023). https://doi.org/10.1007/s44174-023-00072-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44174-023-00072-1

Keywords

Navigation