Skip to main content
Log in

Cloning and molecular properties of a novel luciferase from the Brazilian Bicellonycha lividipennis (Lampyridae: Photurinae) firefly: comparison with other firefly luciferases

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Several firefly luciferases eliciting light emission in the yellow-green range of the spectrum and with distinct kinetic properties have been already cloned, sequenced, and characterized. Some of them are currently being applied as analytical reagents and reporter genes for bioimaging and biosensors, and more recently as potential color tuning indicators of intracellular pH and toxic metals. They were cloned from the subfamilies Lampyrinae (Photinini: Photinus pyralis, Macrolampis sp2; Cratomorphini: Cratomorphus distinctus), Photurinae (Photuris pennsylvanica), Luciolinae (Luciola cruciata, L. lateralis, L. mingrelica, L. italica, Hotaria parvula), and Amydetinae (Amydetes vivianii) occurring in different parts of the world. The largest number has been cloned from fireflies occurring in Brazilian biomes. Taking advantage of the large biodiversity of fireflies occurring in the Brazilian Atlantic rainforest, here we report the cloning and characterization of a novel luciferase cDNA from the Photurinae subfamily, Bicellonycha lividipennis, which is a very common firefly in marshlands in Brazil. As expected, multialignements and phylogenetic analysis show that this luciferase clusters with Photuris pennsylvanica adult isozyme, and with other adult lantern firefly luciferases, in reasonable agreement with traditional phylogenetic analysis. The luciferase elicits light emission in the yellow-green region, has kinetics properties similar to other adult lantern firefly luciferases, including pH- and metal sensitivities, but displays a lower sensitivity to nickel, which is suggested to be caused by the natural substitution of H310Y.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Niwa, K., Ichino, Y., Kumata, S., Nakajima, Y., Hiraishi, Y., Kato, D. I., & Ohmiya, Y. (2010). Quantum yields and kinetics of the firefly bioluminescence reaction of beetle luciferases. Photochemistry and Photobiology, 86(5), 1046–1049.

    Article  CAS  PubMed  Google Scholar 

  2. Viviani, V. R. (2002). The origin, diversity, and structure function relationships of insect luciferases. Cellular and Molecular Life Sciences, 59(11), 1833–1850.

    Article  CAS  PubMed  Google Scholar 

  3. Wood, K. V. (1995). The chemical mechanism and evolutionary development of beetle bioluminescence. Photochemistry and Photobiology, 62(4), 662–673.

    Article  CAS  Google Scholar 

  4. Seliger, H. H., & McElroy, W. D. (1964). The colors of firefly bioluminescence: enzyme configuration and species specificity. Proceedings of the National Academy of Sciences, 52(1), 75–81.

    Article  CAS  Google Scholar 

  5. Viviani, V. R., & Bechara, E. J. H. (1995). Bioluminescence of Brazilian fireflies (Coleoptera: Lampyridae): spectral distribution and PH effect on luciferase-elicited colors. Comparison with elaterid and phengodid luciferases. Photochemistry and Photobiology, 62(3), 490–495.

    Article  CAS  Google Scholar 

  6. Viviani, V. R., & Ohmiya, Y. (2006). Beetle luciferases: Colorful lights on biological processes and diseases. In S. Daunert & S. K. Deo (Eds.), Photoproteins in bioanalysis (pp. 49–63). Wiley.

    Chapter  Google Scholar 

  7. Roda, A., Pasini, P., Mirasole, M., Michelini, E., & Guardigli, M. (2004). Biotechnological application of bioluminescence and chemiluminescence. Trends in Biotechnology, 22, 295–303.

    Article  CAS  PubMed  Google Scholar 

  8. Yeh, H., & Ai, H. (2019). Development and applications of bioluminescent and chemiluminescent reporters and biosensors. Annual Review of Analytical Chemistry, 12(9), 1–22.

    Google Scholar 

  9. Viviani, V. R., Rodrigues, J., & Lee Ho, P. (2021). A novel brighter bioluminescent fusion protein based on ZZ domain and amydetes vivianii firefly luciferase for immunoassays. Frontiers in bioengineering and biotechnology, 9, 1–8. https://doi.org/10.3389/fbioe.2021.755045

    Article  Google Scholar 

  10. Gabriel, G. V., & Viviani, V. R. (2014). Novel application of as dual reporter genes for of intracellular pH and gene expression/location. Photochemical and Photobiological Sciences, 13, 1661–1670.

    Article  CAS  PubMed  Google Scholar 

  11. Gabriel, G. V. M., & Viviani, V. R. (2016). Engineering the metal sensitive sites in Macrolampis sp2 firefly luciferase and use as a novel bioluminescent ratiometric biosensor for heavy metals. Analytical and Bioanalytical Chemistry, 408(30), 8881–8893.

    Article  CAS  PubMed  Google Scholar 

  12. Yang, W., Kubota, H., Yamada, N., Irie, T., & Akiyama, H. (2011). Quantum yields and quantitative spectra of firefly bioluminescence with various bivalent metal ions. Photochemistry and Photobiology, 87, 846–852.

    Article  CAS  Google Scholar 

  13. Sala-Newby, G. B., Thomson, C. M., & Campbell, A. K. (1996). Sequence and biochemical similarities between the luciferases of the glow-worm Lampyris noctiluca and the firefly Photinus pyralis. Biochemical Journal, 313(3), 761–767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Alipour, B. S., Hosseinkhani, S., Nikkhah, M., Naderi- Manesh, H., Chaichi, M. J., & Osaloo, S. K. (2004). Molecular cloning, sequence analysis, and expression of a cDNA encoding the luciferase from the glow-worm, Lampyris turkestanicus. Biochemical and Biophysical Research Communications, 325, 215–222.

    Article  PubMed  CAS  Google Scholar 

  15. De Wet, J. R., Wood, K. V., Helinski, D. R., & DeLuca, M. (1985). Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 82(23), 7870–7873.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Viviani, V. R., Ohelmeyer, T. L., Arnoldi, F. G. C., & Brochetto-Braga, M. R. (2005). A new firefly luciferase with bimodal spectrum: Identification of structural determinants of spectral sensitivity in firefly luciferases. Photochemistry and Photobiology, 81, 843–848. https://doi.org/10.1562/2004-12-09-RA-398R.1

    Article  CAS  PubMed  Google Scholar 

  17. Viviani, V. R., Arnoldi, F. G. C., Brochetto-Braga, M. R., & Ohmiya, Y. (2004). Cloning and characterization of the cDNA for the Brazilian Cratomorphus distinctus larval firefly luciferase: Similarities with the European Lampyris noctiluca and Asiatic Pyrocoelia luciferases. Comparative Biochmistry and Physiology, 139, 151–156.

    Article  CAS  Google Scholar 

  18. Carvalho, M. C., Tomazini, A., Amaral, D. T., Murakami, M. T., & Viviani, V. R. (2020). Luciferase isozymes from the Brazilian Aspisoma lineatum (Lampyridae) firefly: origin of efficient pH-sensitive lantern luciferases from fat body pH-insensitive ancestors. Photochemical and Photobiological Sciences, 11, 1–15. https://doi.org/10.1039/d0pp00272k

    Article  CAS  Google Scholar 

  19. Branchini, B. R., Southworth, T. L., Salituro, L. J., Fontaine, D. M., & Oba, Y. (2017). Cloning of the blue ghost (Phausis reticulata) luciferase reveals a glowing source of green light. Photochemistry and Photobiology, 93, 473–478.

    Article  CAS  PubMed  Google Scholar 

  20. Ye, L., Buck, L. M., Schaeffer, H. J., & Leach, F. R. (1997). Cloning and sequencing of a cDNA for firefly luciferase from Photuris pennsylvanica. Biochimica et Biophysica Acta, 1339(1), 39–52.

    Article  CAS  PubMed  Google Scholar 

  21. Masuda, T., Tatsumi, H., & Nakano, E. (1989). Cloning and sequence analysis of cDNA for luciferase of a Japanese firefly, Luciola cruciata. Gene, 77(2), 265–270.

    Article  CAS  PubMed  Google Scholar 

  22. Cho, K. H., Lee, J. S., Choi, Y. D., & Boo, K. S. (1999). Structural polymophism of the luciferase gene in the firefly, Luciola lateralis. Insect Molecular Biology, 8(2), 193–200.

    Article  CAS  PubMed  Google Scholar 

  23. Tatsumi, H., Kajiyama, N., & Nakano, E. (1992). Molecular cloning and expression in Escherichia coli of a cDNA clone encoding luciferase of a firefly, Luciola lateralis. Biochimica et Biophysica Acta, 1131(2), 161–165.

    Article  CAS  PubMed  Google Scholar 

  24. Devine, J. H., Kutuzova, G. D., Green, V. A., Ugarova, N. N., & Baldwin, T. O. (1993). Luciferase from the East European firefly Luciola mingrelica: Cloning and nucleotide sequence of the cDNA, overexpression in Escherichia coli and purification of the enzyme. Biochimica et Biophysica Acta, 1173(2), 121–132.

    Article  CAS  PubMed  Google Scholar 

  25. Branchini, B. R., Southworth, T. L., DeAngelis, J. P., Roda, A., & Michelini, E. (2006). Luciferase from the Italian firefly Luciola italica: Molecular cloning and expression. Comparative Biochemistry and Physiology B, 145(2), 159–167.

    Article  CAS  Google Scholar 

  26. Ohmiya, Y., Ohba, N., Toh, H., & Tsuji, F. I. (1995). Cloning, expression and sequence analysis of cDNA for the luciferases from the japanese fireflies, Pyrocoelia tniyako and Hotaria parvula. Photochemistry and Photobiology, 62(2), 309–313.

    Article  CAS  PubMed  Google Scholar 

  27. Viviani, V. R., Amaral, D., Prado, R. A., & Arnoldi, F. G. C. (2011). A new blue-shifted luciferase from the Brazilian Amydetes fanestratus (Coleoptera: Lampyridae) firefly: Molecular evolution and structural/functional properties. Photochemical and Photobiological Sciences, 10, 1879–1886. https://doi.org/10.1039/C1PP05210A

    Article  CAS  PubMed  Google Scholar 

  28. Bessho-Uehara, M., Konishi, K., & Oba, Y. (2017). Biochemical characteristics and gene expression profiles of two paralogous luciferases from the Japanese firefly Pyrocoelia atripennis (Coleoptera, Lampyridae, Lampyrinae): Insight into the evolution of firefly luciferase genes. Photochemical and Photobiological Sciences, 16, 1301–1310.

    Article  CAS  PubMed  Google Scholar 

  29. Carrasco-López, C., Ferreira, J. C., Lui, N. M., Schramm, S., Berraud-Pache, R., Navizet, I., & Rabeh, W. M. (2018). Beetle luciferases with naturally red- and blue-shifted emission. Life Science Alliance, 1(4), 1–10.

    Article  Google Scholar 

  30. Conti, E., Franks, N. P., & Brick, P. (1996). Crystal structure of firefly luciferase throws light on a super-family of adenylate-forming enzymes. Structure, 4(3), 287–298.

    Article  CAS  PubMed  Google Scholar 

  31. Kheirabadi, M., Sharafian, Z., Naderi-Manesh, H., Heineman, U., Gohlke, U., & Hosseinkhani, S. (2013). Crystal structure of native and a mutant of Lampyris turkestanicus luciferase implicate in bioluminescence color shift. Biochimica et Biophysica Acta - Proteins and Proteomics, 1834(12), 2729–2735.

    Article  CAS  Google Scholar 

  32. Nakatsu, T., Ichiyama, S., Hiratake, J., Saldanha, A., Kobashi, N., Sakata, K., & Kato, H. (2006). Structural basis for the spectral difference in luciferase bioluminescence. Nature, 440(7082), 372–376.

    Article  CAS  PubMed  Google Scholar 

  33. Branchini, B. R., Magyar, R. A., Murtiashaw, M. H., Anderson, S. M., & Zimmer, M. (1998). Site-directed mutagenesis of Histidine 245 in firefly luciferase: A proposed model of the active site. Biochemistry, 37, 15311–15319.

    Article  CAS  PubMed  Google Scholar 

  34. Branchini, B. R., Southworth, T. L., Murtiashaw, M. H., Boije, H., & Fleet, S. E. (2003). A mutagenesis study of the luciferin binding site residues of firefly luciferase. Biochemistry, 42, 10429–10436. https://doi.org/10.1021/bi030099x

    Article  CAS  PubMed  Google Scholar 

  35. Kajiyama, N., & Nakano, E. (1991). Isolation and characterization of mutants of firefly luciferase which produce different colors of light. Protein Engineering, 4, 691–693.

    Article  CAS  PubMed  Google Scholar 

  36. Koksharov, M. I., & Ugarova, N. N. (2011). Thermostabilization of firefly luciferase by in vivo directed evolution. Protein Engineering, Design and Selection, 24, 835–844.

    Article  CAS  PubMed  Google Scholar 

  37. Sandalova, T. P., & Ugarova, N. N. (1999). Model of the active site of firefly luciferase. Biochemistry (Moscow Russian, Federation), 64, 962–967.

    CAS  Google Scholar 

  38. Viviani, V. R., Uchida, A., Viviani, A., & Ohmiya, Y. (2002). The influence of Ala243(Gly247), Arg 215 and Thr226(Asn230) on the bioluminescence spectra and pH-sensitivity of railroad worm, click beetle and firefly luciferases. Photochemical and Photobiological Sciences, 76, 538–544.

    Article  CAS  Google Scholar 

  39. Viviani, V. R., et al. (2006). Active-site properties of Phrixotrix railroad worm green and red bioluminescence-eliciting luciferases. The Journal of Biochemistry, 140, 467–474.

    Article  CAS  PubMed  Google Scholar 

  40. Viviani, V. R., Silva Neto, A. J., Arnoldi, F. C., Barbosa, J. A., & Ohmiya, Y. (2008). The influence of the loop between residues 223–235 in beetle luciferases bioluminescence spectra: A solvent gate for the active site of pH-sensitive luciferases. Photochemistry and Photobiology, 83, 138–144.

    Google Scholar 

  41. Viviani, V. R., Amaral, D. T., Neves, D. R., Simões, A., & Arnoldi, F. G. C. (2013). The luciferin binding site residues C/T311 (S314) influence the bioluminescence color of beetle luciferase through main-chain interaction with oxyluciferin phenolate. Biochemistry, 52, 19–27.

    Article  CAS  PubMed  Google Scholar 

  42. Viviani, V. R., & Ohmiya, Y. (2000). Bioluminescence color determinants of Phrixothrix railroadworm luciferases: Chimeric luciferases, site- directed mutagenesis of Arg215 and guanidine effect. Photochemical and Photobiological Sciences, 72, 267–271.

    Article  CAS  Google Scholar 

  43. Viviani, V. R., Gabriel, G. V. M., Bevilaqua, V. R., Simões, A. F., Hirano, T., & Lopes-de-Oliveira, P. S. (2018). The proton and metal binding sites responsible for the pH-dependent green-red bioluminescence color tuning in firefly luciferases. Scientific Reports, 8(1), 1–14.

    Article  CAS  Google Scholar 

  44. Pelentir, G. F., Bevilaqua, V. R., & Viviani, V. R. (2019). A highly efficient, thermostable and cadmium selective firefly luciferase suitable for ratiometric metal and pH-biosensing and for sensitive ATP assays. Photochemical and Photobiological Sciences, 18(8), 2061–2070.

    Article  CAS  PubMed  Google Scholar 

  45. Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.

    CAS  Google Scholar 

  46. Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. The proteomics protocols handbook (pp. 571–607). London: Humana Press.

    Chapter  Google Scholar 

  47. Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D. L., Darling, A., Höhna, S., & Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3), 539–542.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Katoh, K., Kuma, K. I., Toh, H., & Miyata, T. (2005). MAFFT version 5: Improvement in accuracy of multiple sequence alignment. Nucleic Acids Research, 33(2), 511–518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., Von Haeseler, A., & Lanfear, R. (2020). IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution, 37(5), 1530–1534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gould, S. J., Keller, G.-A., & Subramani, S. (1987). Identification of a peroxisomal targeting signal at the carboxy terminus of firefly luciferase. Journal of Cell Biology, 105, 2923–2931.

    Article  CAS  PubMed  Google Scholar 

  51. Gould, S. J., Keller, G.-A., Hosken, N., Wilkinson, J., & Subramani, S. (1989). A Conserved Tripeptide Sorts Proteins to Peroxisomes. Journal of Cell Biology, 108, 1657–1664.

    Article  CAS  PubMed  Google Scholar 

  52. Gould, S. J., Keller, G.-A., Schneider, M., Howell, S. H., Garrard, L. J., Goodman, J. M., Distel, B., Tabak, H., & Subramani, S. (1990). Peroxisomal protein import is conserved between yeast, plants, insects and mammals. The EMBO Journal, 9(1), 85–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Amaral, D. T., Arnoldi, F. G. C., Rosa, S. P., & Viviani, V. R. (2014). Molecular phylogeny of neotropical bioluminescent beetles (Coleoptera: Elateroidea) in southern and central Brazil. Luminescence, 29(5), 412–422.

    Article  CAS  PubMed  Google Scholar 

  54. Kutuzova, G. D., Hannah, R. H., & Wood, K. V. (2022). Bioluminescence color variation and kinetic behavior relationship among beetle luciferases. In: Bioluminescence and Chemiluminescence: Molecular Reporting with Photons, Proceedings of 9th International Symposium of Bioluminescence and Chemiluminescence, pp. 248–252.

  55. Viviani, V. R., Silva, A. C. R., Perez, G. L. O., Santelli, R. V., Bechara, E. J. H., & Reinach, F. C. (1999). Molecular cloning and characterization of cDNA for the larval Pyrearinus termitilluminans luciferase. Photochemistry and Photobiology, 70, 254–260.

    Article  CAS  PubMed  Google Scholar 

  56. Viviani, V. R., Bechara, E. J. H., & Ohmiya, Y. (1999). Cloning, sequence analysis and expression of cDNAs for Phrixothrix railroad worm luciferases: Relationship between bioluminescence spectra and primary structures. Biochemistry, 38, 8271–8279.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by Fundação de Amparo à Pesquisa do Estado de São Paulo, Grant no [2010/05426-8], Conselho Nacional de Desenvolvimento Científico e Tecnológico, Grant no [401.867/2016-1].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. R. Viviani.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreira, A.C., Amaral, D.T., Gabriel, G.V.M. et al. Cloning and molecular properties of a novel luciferase from the Brazilian Bicellonycha lividipennis (Lampyridae: Photurinae) firefly: comparison with other firefly luciferases. Photochem Photobiol Sci 21, 1559–1571 (2022). https://doi.org/10.1007/s43630-022-00240-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-022-00240-0

Keywords

Navigation