Skip to main content
Log in

Fluorophore spectroscopy in aqueous glycerol solution: the interactions of glycerol with the fluorophore

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A common perception exists that glycerol provides an inert-like environment modifying viscosity and index of refraction by its various concentrations in aqueous solution. Said perception is herein challenged by investigating the effects of the glycerol environment on the spectroscopic properties of fluorescein, as a representative fluorophore, using steady-state and time-resolved techniques and computational chemistry. Results strongly suggest that the fluorescence quantum yield, measured fluorescence lifetime (FLT), natural lifetime and calculated fluorescence lifetime are all highly sensitive to the presence of glycerol. Glycerol was found to impact both the ground and first excited states of fluorescein, quenching and modifying both absorption and emission spectra, affecting the fundamental electrical dipoles of the ground and first excited singlet states, and lowering FLT and quantum yield. Furthermore, the Stern–Volmer, Lippert–Mataga, Perrin and Strickler–Berg relations indicate that glycerol acts upon fluorescein in aqueous solution as a quencher and alters the fluorescein geometry. Predictions made by computational chemistry impressively correspond to experimental results, both indicating changes in the properties of fluorescein at around 35% v/v aqueous glycerol, a clear indication that glycerol is not an innocent medium. This study proposes the Strickler–Berg relation as a means of detecting non-negligible effects of a hosting medium on its host fluorophore. These new insights on the molecular structures, the interactions between glycerol and its host fluorophore, and the effects of one on the other may be essential for understanding fundamental phenomena in chemistry and related fields.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. We are not aware of pKa measurements for fluorescein in nonaqueous solutions and binary solvent mixtures. Thus, we cannot be definite regarding the protonation state of the fluorophore. However, it is reasonable to assume that in solvents with a large proportion of water, the behaviour of the solution will more resemble that of the aqueous solution—and it is at these predominantly aqueous solutions where the spectrochemical behaviour of fluorescein is seen to change. It should also be noted that deprotonation provides a larger conjugated π-system, which is a significant stabilizing effect. Regardless, the hydroxy (–OH) group is still a good hydrogen-bond partner. In principle one could calculate the pKa of fluorescein in all the various solutions. However, calculating pKa is notoriously finicky due to the logarithmic nature of pKa, which will magnify any small errors in the calculation. Three potential sources of error are the inherent errors in the (DFT) calculation method, the unknown solvation properties of the proton in various media, and deviations from the assumed linear monotonicity of the Gibbs free energy between 100% water and 100% glycerol.

References

  1. Mazur, P. (1984). Freezing of living cells: Mechanisms and implications. American Journal of Physiology: Cell Physiology, 247(3), C125–C142. https://doi.org/10.1152/ajpcell.1984.247.3.C125

    Article  CAS  Google Scholar 

  2. Lovelock, J. E. (1953). Het mechanism of the protective action of glycerol against haemolysis by freezing and thawing. Biochimica et Biophysica Acta, 11, 28–36. https://doi.org/10.1016/0006-3002(53)90005-5

    Article  CAS  PubMed  Google Scholar 

  3. Arakawa, T., Kita, Y., & Carpenter, J. F. (1991). Protein-solvent interactions in pharmaceutical formulations. Pharmaceutical Research, 8(3), 285–291. https://doi.org/10.1023/A:1015825027737

    Article  CAS  PubMed  Google Scholar 

  4. Ware, W. R. (1962). Oxygen quenching of fluorescence in solution: An experimental study of the diffusion process. Journal of Physical Chemistry, 66(3), 455–458. https://doi.org/10.1021/j100809a020

    Article  CAS  Google Scholar 

  5. Axelrod, D., Koppel, D. E., Schlessinger, J., Elson, E., & Webb, W. W. (1976). Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophysical Journal, 16(9), 1055–1069. https://doi.org/10.1016/S0006-3495(76)85755-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Towey, J. J., & Dougan, L. (2012). Structural examination of the impact of glycerol on water structure. Journal of Physical Chemistry B, 116(5), 1633–1641. https://doi.org/10.1021/jp2093862

    Article  CAS  Google Scholar 

  7. Hayashi, Y., Puzenko, A., & Feldman, Y. (2006). Slow and fast dynamics in glycerol–water mixtures. Journal of Non-Crystalline Solids, 352(42–49), 4696–4703. https://doi.org/10.1016/j.jnoncrysol.2006.01.113

    Article  CAS  Google Scholar 

  8. Matthews, D. R., Fruhwirth, G. O., Weitsman, G., Carlin, L. M., Ofo, E., Keppler, M., Barber, P. R., Tullis, I. D. C., Vojnovic, B., Ng, T., & Ameer-Beg, S. M. (2012). A multi-functional imaging approach to high-content protein interaction screening. PLoS ONE, 7(4), e33231. https://doi.org/10.1371/journal.pone.0033231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Suhling, K., Davis, D. M., Petrasek, Z., Siegel, J., & Phillips, D. (2001). Influence of the refractive index on EGFP fluorescence lifetimes in mixtures of water and glycerol. Proceedings of the Society of Photo-Optical Instrumentation Engineering, 4259, 92–101. https://doi.org/10.1117/12.432486

    Article  CAS  Google Scholar 

  10. Buschmann, V., Weston, K. D., & Sauer, M. (2003). Spectroscopic study and evaluation of red-absorbing fluorescent dyes. Bioconjugate Chemistry, 14(1), 195–204. https://doi.org/10.1021/bc025600x

    Article  CAS  PubMed  Google Scholar 

  11. Clayton, A. H. A., Hanley, Q. S., Arndt-Jovin, D. J., Subramaniam, V., & Jovin, T. M. (2002). Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM). Biophysical Journal, 83(3), 1631–1649. https://doi.org/10.1016/S0006-3495(02)73932-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Szalay, L., & Tombácz, E. (1964). Effect of the solvent on the fluorescence spectrum of trypaflavine and fluorescein. Acta Physica Academiae Scientiarum Hungaricae, 16(4), 367–371. https://doi.org/10.1007/BF03157977

    Article  Google Scholar 

  13. Klonis, N., & Sawyer, W. H. (2000). Effect of solvent-water mixtures on the prototropic equilibria of fluorescein and on the spectral properties of the monoanion. Photochemistry and Photobiology, 72(2), 179–185. https://doi.org/10.1562/0031-8655(2000)072%3c0179:EOSWMO%3e2.0.CO;2

    Article  CAS  PubMed  Google Scholar 

  14. Alvarez-Pez, J. M., Ballesteros, L., Talavera, E., & Yguerabide, J. (2001). Fluorescein excited-state proton exchange reactions: Nanosecond emission kinetics and correlation with steady-state fluorescence intensity. Journal of Physical Chemistry A, 105(26), 6320–6332. https://doi.org/10.1021/jp010372+

    Article  CAS  Google Scholar 

  15. Spence, M. T., & Johnson, I. D. (2010). The molecular probes handbook—a guide to fluorescent probes and labeling technologies. ThermoFisher Scientific, thermofisher.com, pp. 883–902.

  16. Morosanu, A. C., Dimitriu, D. G., & Dorohoi, D. O. (2019). Excited state dipole moment of the fluorescein molecule estimated from electronic absorption spectra. Journal of Molecular Structure, 1180, 723–732. https://doi.org/10.1016/j.molstruc.2018.12.057

    Article  CAS  Google Scholar 

  17. Drexhage, K. H. (1973). Dye Lasers. Berlin: Springer.

  18. Fixler, D., Tirosh, R., Zurgil, N., & Deutsch, M. (2005). Tracing apoptosis and stimulation in individual cells by fluorescence intensity and anisotropy decay. Journal of Biomedical Optics, 10(3), 034007. https://doi.org/10.1117/1.1924712

    Article  PubMed  Google Scholar 

  19. Lakowicz, J. R. (2006). Principles of Fluorescence Spectroscopy. Springer.

    Book  Google Scholar 

  20. Valeur, B. (2001). Molecular Fluorescence: Principles and Applications. Wiley-VCH.

    Book  Google Scholar 

  21. Fixler, D., Garcia, J., Zalevsky, Z., Weiss, A., & Deutsch, M. (2007). Speckle random coding for 2D super resolving fluorescent microscopic imaging. Micron, 38(2), 121–128. https://doi.org/10.1016/j.micron.2006.07.008

    Article  PubMed  Google Scholar 

  22. Witmer, A. N., Vrensen, G. F. J. M., Van Noorden, C. J. F., & Schlingemann, R. O. (2003). Vascular endothelial growth factors and angiogenesis in eye disease. Progress in Retinal and Eye Research, 22(1), 1–29. https://doi.org/10.1016/S1350-9462(02)00043-5

    Article  CAS  PubMed  Google Scholar 

  23. Cunha-Vaz, J., Faria de Abreu, J. R., Campos, A. J., & Figo, G. M. (1975). Early breakdown of the blood-retinal barrier in diabetes. British Journal of Ophthalmology, 59, 649–656. https://doi.org/10.1136/bjo.59.11.649

    Article  CAS  Google Scholar 

  24. Stern, O., & Volmer, M. (1919). Über die Abklingungszeit der Fluoreszenz. Physikalische Zeitschrift, 20, 183–188.

    CAS  Google Scholar 

  25. Lippert, E. (1957). Spektroskopische Bestimmung des Dipolmomentes aromatischer Verbindungen im ersten angeregten Singulettzustand. Zeitschrift für Elektrochemie, 61(8), 962–975. https://doi.org/10.1002/bbpc.19570610819

    Article  CAS  Google Scholar 

  26. Mataga, N., Kaifu, Y., & Koizumi, M. (1956). Solvent effects upon fluorescence spectra and the dipole moments of excited molecules. Bulletin of the Chemical Society of Japan, 26(4), 465–470. https://doi.org/10.1246/bcsj.29.465

    Article  Google Scholar 

  27. Perrin, F. (1926). Polarisation de la lumière de fluorescence Vie moyenne des molécules dans l’etat excité. Journal de Physique et du Radium, 7(12), 390–401. https://doi.org/10.1051/jphysrad:01926007012039000

    Article  CAS  Google Scholar 

  28. Strickler, S. J., & Berg, R. A. (1962). Relationship between absorption intensity and fluorescence lifetime of molecules. Journal of Chemical Physics, 37(4), 814–822. https://doi.org/10.1063/1.1733166

    Article  CAS  Google Scholar 

  29. Buck, R. P., Rondinini, S., Covington, A. K., Baucke, F. G. K., Brett, C. M. A., Camões, M. F., Milton, M. J. T., Mussini, T., Naumann, R., Pratt, K. W., Spitzer, P., & Wilson, G. S. (2002). Measurement of pH definition, standards and procedures. Pure and Applied Chemistry, 74(11), 2169–2200. https://doi.org/10.1351/pac200274112169

    Article  CAS  Google Scholar 

  30. Cheng, N.-S. (2008). Formula for the viscosity of a glycerol−water mixture. Industrial & Engineering Chemistry Research, 47(9), 3285–3288. https://doi.org/10.1021/ie071349z

    Article  CAS  Google Scholar 

  31. Baffou, G., Kreuzer, M. P., Kulzer, F., & Quidant, R. (2009). Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy. Optics Express, 17(5), 3291–3298. https://doi.org/10.1364/OE.17.003291

    Article  CAS  PubMed  Google Scholar 

  32. Freire, S., de Araujo, M. H., Al-Soufi, W., & Novo, M. (2014). Photophysical study of Thioflavin T as fluorescence marker of amyloid fibrils. Dyes and Pigments, 110, 97–105. https://doi.org/10.1016/j.dyepig.2014.05.004

    Article  CAS  Google Scholar 

  33. Lee, J., Pack, C.-G., Kim, S. Y., & Kim, S. W. (2014). Diffusion coefficients of CdSe/CdS quantum rods in water measured using polarized fluorescence correlation spectroscopy. Journal of the Optical Society of Korea, 18(5), 598–604. https://doi.org/10.3807/JOSK.2014.18.5.598

    Article  CAS  Google Scholar 

  34. Fixler, D., Namer, Y., Yishay, Y., & Deutsch, M. (2006). Influence of fluorescence anisotropy on fluorescence intensity and lifetime measurement: theory, simulations and experiments. IEEE Transactions on Biomedical Engineering, 53(6), 1141–1152. https://doi.org/10.1109/TBME.2006.873539

    Article  PubMed  Google Scholar 

  35. Turgeman, L., & Fixler, D. (2013). Photon efficiency optimization in time-correlated single photon counting technique for fluorescence lifetime imaging systems. IEEE Transactions on Biomedical Engineering, 60(6), 1571–1579. https://doi.org/10.1109/TBME.2013.2238671

    Article  PubMed  Google Scholar 

  36. Zhang, X.-F., Zhang, Y., & Liu, L. (2014). Fluorescence lifetimes and quantum yields of ten rhodamine derivatives: Structural effect on emission mechanism in different solvents. Journal of Luminescence, 145, 448–453. https://doi.org/10.1016/j.jlumin.2013.07.066

    Article  CAS  Google Scholar 

  37. Kononov, A. I., Moroshkina, E. B., Tkachenko, N. V., & Lemmetyinen, H. (2001). Photophysical processes in the complexes of DNA with ethidium bromide and acridine orange: A femtosecond study. Journal of Physical Chemistry B, 105(2), 535–541. https://doi.org/10.1021/jp002615o

    Article  CAS  Google Scholar 

  38. Praus, P., Sureau, F., Kocisova, E., Rosenberg, I., Stepanek, J., & Turpin, P. Y. (2003). A frequency domain phase/modulation technique for intracellular multicomponent fluorescence analysis: Technical approach and pharmacological applications. Journal of Spectroscopy (London, United Kingdom), 17(2–3), 429–434. https://doi.org/10.1155/2003/418370

    Article  CAS  Google Scholar 

  39. Gaussian 09, Revision E.01, Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J. Gaussian, Inc., Wallingford CT, 2013.

  40. Gaussian 16, Revision B.01, Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A.V., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J.J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Keith, T.A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A.P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Millam, J.M., Klene, M., Adamo, C., Cammi, R., Ochterski, J.W., Martin, R.L., Morokuma, K., Farkas, O., Foresman, J.B., Fox, D.J. (2016). Gaussian, Inc., Wallingford CT, 2016.

  41. Neese, F. (2012). The ORCA program system. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2(1), 73–78. https://doi.org/10.1002/wcms.81

    Article  CAS  Google Scholar 

  42. Adamo, C., & Barone, V. (1999). Toward reliable density functional methods without adjustable parameters: The PBE0 model. Journal of Chemical Physics, 110(13), 6158–6170. https://doi.org/10.1063/1.478522

    Article  CAS  Google Scholar 

  43. Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  44. Perdew, J. P., Burke, K., & Ernzerhof, M. (1997). Gerneralized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Physical Review Letters, 78(7), 1396. https://doi.org/10.1103/PhysRevLett.78.1396

    Article  CAS  Google Scholar 

  45. Caldeweyher, E., Bannwarth, C., & Grimme, S. (2017). Extension of the D3 dispersion coefficient model. Journal of Chemical Physics, 147(3), 034112. https://doi.org/10.1063/1.4993215

    Article  CAS  Google Scholar 

  46. Caldeweyher, E., Ehlert, S., Hansen, A., Neugebauer, H., Spicher, S., Bannwarth, C., & Grimme, S. (2019). A generally applicable atomic-charge dependent London dispersion correction. Journal of Chemical Physics, 150(15), 154122. https://doi.org/10.1063/1.5090222

    Article  CAS  Google Scholar 

  47. Szabados, Å. (2006). Theoretical interpretation of Grimme’s spin-component-scaled second order Møller-Plesset theory. Journal of Chemical Physics, 125(21), 214105. https://doi.org/10.1063/1.2404660

    Article  CAS  Google Scholar 

  48. Grimme, S. (2003). Improved second-order Møller-Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies. Journal of Chemical Physics, 118(20), 9095–9102. https://doi.org/10.1063/1.1569242

    Article  CAS  Google Scholar 

  49. Møller, C., & Plesset, M. S. (1934). Note on an approximation treatment for many-electron systems. Physical Review, 46(7), 618–622. https://doi.org/10.1103/PhysRev.46.618

    Article  Google Scholar 

  50. Perdew, J. P. (1986). Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Physical Review B: Condensed Matter and Material Physics, 33(12), 8822–8824. https://doi.org/10.1103/PhysRevB.33.8822

    Article  CAS  Google Scholar 

  51. Santra, G., Sylvetsky, N., & Martin, J. M. L. (2019). Minimally empirical double hybrid functionals trained against the GMTKN55 database: RevDSD-PBEP86-D4, revDOD-PBE-D4, and DOD-SCAN-D4. Journal of Physical Chemistry A, 123(24), 5129–5143. https://doi.org/10.1021/acs.jpca.9b03157

    Article  CAS  Google Scholar 

  52. The DFTD4 program was downloaded from the authors site. (2021). https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/dftd4.

  53. Schäfer, A., Horn, H., & Ahlrichs, R. (1992). Fully optimized contracted Gaussian basis sets for atoms Li to Kr. Journal of Chemical Physics, 97(4), 2571–2577. https://doi.org/10.1063/1.463096

    Article  Google Scholar 

  54. Weigend, F., & Ahlrichs, R. (2005). Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Physical Chemistry Chemical Physics, 7, 3297–3305. https://doi.org/10.1039/B508541A

    Article  CAS  PubMed  Google Scholar 

  55. Mennucci, B., & Tomasi, J. (1997). Continuum solvation models: A new approach to the problem of solute’s charge distribution and cavity boundaries. Journal of Chemical Physics, 106(12), 5151–5158. https://doi.org/10.1063/1.473558

    Article  CAS  Google Scholar 

  56. Cancès, E., Mennucci, B., & Tomasi, J. (1997). A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. Journal of Chemical Physics, 107(8), 3032–3041. https://doi.org/10.1063/1.474659

    Article  Google Scholar 

  57. Cossi, M., Barone, V., Mennucci, B., & Tomasi, J. (1998). Ab initio study of ionic solutions by a polarizable continuum dielectric model. Chemical Physics Letters, 286(3–4), 253–260. https://doi.org/10.1016/S0009-2614(98)00106-7

    Article  CAS  Google Scholar 

  58. Cossi, M., Scalmani, G., Rega, N., & Barone, V. (2002). New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution. Journal of Chemical Physics, 117(1), 43–54. https://doi.org/10.1063/1.1480445

    Article  CAS  Google Scholar 

  59. Mennucci, B., Cancès, E., & Tomasi, J. (1997). Evaluation of solvent effects in isotropic and anisotropic dielectrics and in ionic solutions with a unified integral equation method: Theoretical bases, computational implementation, and numerical applications. Journal of Physical Chemistry B, 101(49), 10506–10517. https://doi.org/10.1021/jp971959k

    Article  CAS  Google Scholar 

  60. Tomasi, J., Mennucci, B., & Cancès, E. (1999). The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level. Journal of Molecular Structure: THEOCHEM, 464(1–3), 211–226. https://doi.org/10.1016/S0166-1280(98)00553-3

    Article  CAS  Google Scholar 

  61. Marenich, A. V., Cramer, C. J., & Truhlar, D. G. (2009). Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. Journal of Physical Chemistry B, 113(18), 6378–6396. https://doi.org/10.1021/jp810292n

    Article  CAS  Google Scholar 

  62. Bauernschmitt, R., & Ahlrichs, R. (1996). Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chemical Physics Letters, 256(4–5), 454–464. https://doi.org/10.1016/0009-2614(96)00440-X

    Article  CAS  Google Scholar 

  63. Casida, M. E., Jamorski, C., Casida, K. C., & Salahub, D. R. (1998). Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold. Journal of Chemical Physics, 108(11), 4439–4449. https://doi.org/10.1063/1.475855

    Article  CAS  Google Scholar 

  64. Stratmann, R. E., Scuseria, G. E., & Frisch, M. J. (1998). An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. Journal of Chemical Physics, 109(19), 8128–8224. https://doi.org/10.1063/1.11477483

    Article  Google Scholar 

  65. Van Caillie, C., & Amos, R. D. (1999). Geometric derivatives of excitation energies using SCF and DFT. Chemical Physics Letters, 308(3–4), 249–255. https://doi.org/10.1016/S0009-2614(99)00646-6

    Article  Google Scholar 

  66. Van Caillie, C., & Amos, R. D. (2000). Geometric derivatives of density functional theory excitation energies using gradient-corrected functionals. Chemical Physics Letters, 317(1–2), 159–164. https://doi.org/10.1016/S0009-2614(99)01346-9

    Article  Google Scholar 

  67. Furche, F., & Ahlrichs, R. (2002). Adiabatic time-dependent density functional methods for excited state properties. Journal of Chemical Physics, 117(16), 7433–7447. https://doi.org/10.1063/1.1508368

    Article  CAS  Google Scholar 

  68. Scalmani, G., Frisch, M. J., Mennucci, B., Tomasi, J., Cammi, R., & Barone, V. (2006). Geometries and properties of excited states in the gas phase and in solution: Theory and application of a time-dependent density functional theory polarizable continuum model. Journal of Chemical Physics, 124(9), 094107. https://doi.org/10.1063/1.2173258

    Article  CAS  Google Scholar 

  69. Jacquemin, D., Wathelet, V., Perpète, E. A., & Adamo, C. (2009). Extensive TD-DFT benchmark: Singlet-excited states of organic molecules. Journal of Chemical Theory and Computation, 5(9), 2420–2435. https://doi.org/10.1021/ct900298e

    Article  CAS  PubMed  Google Scholar 

  70. Jacquemin, D., Mennucci, B., & Adamo, C. (2011). Excited-state calculations with TD-DFT: From benchmarks to simulations in complex environments. Physical Chemistry Chemical Physics, 13, 16987–16998. https://doi.org/10.1039/C1CP22144B

    Article  CAS  PubMed  Google Scholar 

  71. Isegawa, M., Peverati, R., & Truhlar, D. G. (2012). Performance of recent and high-performance approximate density functionals for time-dependent density functional theory calculations of valence and Rydberg electronic transition energies. Journal of Chemical Physics, 137(24), 244104. https://doi.org/10.1063/1.4769078

    Article  CAS  Google Scholar 

  72. Leang, S. S., Zahariev, F., & Gordon, M. S. (2012). Benchmarking the performance of time-dependent density functional methods. Journal of Chemical Physics, 136(10), 104101. https://doi.org/10.1063/1.3689445

    Article  CAS  Google Scholar 

  73. Laurent, A. D., & Jacquemin, D. (2013). TD-DFT benchmarks: A review. International Journal of Quantum Chemistry, 113(17), 2019–2039. https://doi.org/10.1002/qua.24438

    Article  CAS  Google Scholar 

  74. Santoro, F., & Jacquemin, D. (2016). Going beyond the vertical approximation with time-dependent density functional theory. Wiley Interdisciplinary Reviews: Computational Molecular Science, 6(5), 460–486. https://doi.org/10.1002/wcms.1260

    Article  CAS  Google Scholar 

  75. Boese, A. D., & Handy, N. C. (2002). New exchange-correlation density functionals: the role of the kinetic-energy density. Journal of Chemical Physics, 116(22), 9559–9569. https://doi.org/10.1063/1.1476309

    Article  CAS  Google Scholar 

  76. Hamprecht, F. A., Cohen, A. J., Tozer, D. J., & Handy, N. C. (1998). Development and assessment of new exchange-correlation functionals. Journal of Chemical Physics, 109(15), 6264–6271. https://doi.org/10.1063/1.477267

    Article  CAS  Google Scholar 

  77. Wiberg, K. B. (1968). Application of the pople-santry-segal CNDO method to the cyclopropyl carbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron, 24, 1083–1096. https://doi.org/10.1016/0040-4020(68)88057-3

    Article  CAS  Google Scholar 

  78. Bultinck, P., Van Alsenoy, C., Ayers, P. W., & Ramon, C.-D. (2007). Critical analysis and extension of the Hirshfeld atoms in molecules. Journal of Chemical Physics, 126(14), 144111. https://doi.org/10.1036/1.2715563

    Article  Google Scholar 

  79. Hirshfeld, F. L. (1977). Bonded-atom fragments for describing molecular charge densities. Theoretica Chimica Acta, 44(2), 129–138.

    Article  CAS  Google Scholar 

  80. Demas, J. N., & Crosby, G. A. (1971). The measurement of photoluminescence quantum yields. A review. Journal of Physical Chemistry, 75(8), 991–1024. https://doi.org/10.1021/jp100678a001

    Article  Google Scholar 

  81. Magde, D., Wong, R., & Seybold, P. G. (2002). Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: Improved absolute standards for quantum yields. Photochemistry and Photobiology, 75(4), 327–334. https://doi.org/10.1562/0031-8655(2002)0750327FQYATR2.0.CO2

    Article  CAS  PubMed  Google Scholar 

  82. Fleming, G. R., Knight, A. W. E., Morris, J. M., Morrison, R. J. S., & Robinson, G. W. (1977). Picosecond fluorescence studies of xanthene dyes. Journal of the American Chemical Society, 99(13), 4306–4311. https://doi.org/10.1021/ja00455a017

    Article  CAS  Google Scholar 

  83. Weber, G., & Teale, F. W. J. (1957). Determination of the absolute quantum yield of fluorescent solutions. Transactions of the Faraday Society, 53, 646–655. https://doi.org/10.1039/TF9575300646

    Article  CAS  Google Scholar 

  84. Chen, X., Tao, M., Zhou, Z., & Li, D. (2019). A new theoretical calculation of the equilibrium constant and temperature for the carbon isotope exchange reaction between CH4 and CO2. Geothermics, 79, 140–144. https://doi.org/10.1016/j.geothermics.2019.01.010

    Article  Google Scholar 

  85. Kubota, Y., & Steiner, R. F. (1977). Fluorescence decay and quantum yield characteristics of acridine orange and proflavine bound to DNA. Biophysical Chemistry, 6(3), 279–289. https://doi.org/10.1016/0301-4622(77)85009-6

    Article  CAS  PubMed  Google Scholar 

  86. Hayashi, Y., Puzenko, A., Balin, I., Ryabov, Y. E., & Feldman, Y. (2005). Relaxation dynamics in glycerol-water mixtures. 2. Mesoscopic feature in water rich mixtures. Journal of Physical Chemistry B, 109(18), 9174–9177. https://doi.org/10.1021/jp050425d

    Article  CAS  Google Scholar 

  87. Safarzadeh-Amiri, M., Thompson, M., & Krull, U. J. (1989). Trans-4-Dimethylamino-4′-(1-oxobutyl)stilbene: a new fluorescent probe of the bilayer lipid membrane. Journal of Photochemistry and Photobiology A: Chemistry, 47(3), 299–308. https://doi.org/10.1016/1010-6030(89)87074-1

    Article  CAS  Google Scholar 

  88. Johansson, L. B. -Å. (1990). Limiting fluorescence anisotropies of perylene and xanthene derivatives. Journal of the Chemical Society, Faraday Transactions, 86(12), 2103–2107. https://doi.org/10.1039/FT9908602103

    Article  CAS  Google Scholar 

  89. Andrade, E. N. D. C. (1930). The viscosity of liquids. Nature, 125, 309–310. https://doi.org/10.1038/125309b0

    Article  Google Scholar 

  90. Glycerine Producers' Association. (1963). Physical properties of glycerine and its solutions. Glycerine Producers’ Association, New York.

  91. LeBel, R. G., & Goring, D. A. I. (1962). Density, viscosity, refractive index, and hygroscopicity of mixtures of water and dimethyl sulfoxide. Journal of Chemical & Engineering Data, 7(1), 100–101. https://doi.org/10.1021/je60012a032

    Article  CAS  Google Scholar 

  92. Eftink, M. R., & Hagaman, K. A. (1986). Viscosity dependence of the solute quenching of the tryptophanyl fluorescence of proteins. Biophysical Chemistry, 25(3), 277–282. https://doi.org/10.1016/0301-4622(86)80019-9

    Article  CAS  PubMed  Google Scholar 

  93. Feitelson, Y. (1964). On the mechanism of fluorescence quenching. Tyrosine and similar compounds. Journal of Physical Chemistry, 68(2), 391–397. https://doi.org/10.1021/j100784a033

    Article  CAS  Google Scholar 

  94. Mota, M. C., Carvalho, P., Ramalho, J., & Leite, E. (1991). Spectrophotometric analysis of sodium fluorescein aqueous solutions. Determination of molar absorption coefficient. International Ophthalmology, 15(5), 321–326. https://doi.org/10.1007/BF00128951

    Article  CAS  PubMed  Google Scholar 

  95. (2012). In L. Bhattacharyya, J. S. Rohrer (Eds). Applications of ion chromatography for pharmaceutical and biological products. Hoboken: Wiley, pp. 455–456.

  96. Lavis, L. D., Rutkoski, T. J., & Raines, R. T. (2007). Tuning the pKa of fuorescein to optimize binding assays. Analytical Chemistry, 79(17), 6775–6782. https://doi.org/10.1021/ac070907g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Foresman, J. B., & Frisch, Æ. (2015). Exploring Chemistry with Electronic Structure Methods. Gaussian Inc.

    Google Scholar 

  98. Cappelli, C., Mennucci, B., & Monti, S. (2005). Environmental effects on the spectroscopic properties of gallic acid: A combined classical and quantum mechanical study. Journal of Physical Chemistry A, 109(9), 1933–1943. https://doi.org/10.1021/jp044781s

    Article  CAS  Google Scholar 

  99. Siskos, M. G., Kontogianni, V. G., Tsiafoulis, C. G., Tzakos, A. G., & Gerothanassis, I. P. (2013). Investigation of solute–solvent interactions in phenol compounds: Accurate ab initio calculations of solvent effects on 1H NMR chemical shifts. Organic & Biomolecular Chemistry, 11(42), 7400–7411. https://doi.org/10.1039/C3OB41556B

    Article  CAS  Google Scholar 

  100. Lomas, J. S. (2016). 1H NMR spectra of alcohols in hydrogen bonding solvents: DFT/GIAO calculations of chemical shifts. Magnetic Resonance in Chemistry, 54(1), 28–38. https://doi.org/10.1002/mrc.4312

    Article  CAS  PubMed  Google Scholar 

  101. Sadlej, J., Pecul, M., Barone, V., Cimino, P., Pavone, M., Cappelli, C., Stephens, P. J., Devlin, F. J., Ruud, K., Hug, W., Cammi, R., Mennucci, B., Rizzo, A., Ferrarini, A., Ågren, H., Mikkelsen, K. V., Corni, S., & Frediani, L. (2007) In B. Mennucci, R. Cammi (Eds.), Continuum solvation models in chemical physics: From theory to applications. Chichester: Wiley, pp. 125–312.

  102. (2019). https://en.wikipedia.org/wiki/Gaussian_function. Accessed 2 Jun 2019.

  103. (2019). http://gaussian.com/uvvisplot/. Accessed 2 Jun 2019.

Download references

Acknowledgements

This study was endowed by the Bequest of Moshe-Shimon and Judith Weisbrodt.

Funding

This study was endowed by the Bequest of Moshe-Shimon and Judith Weisbrodt.

Author information

Authors and Affiliations

Authors

Contributions

HF: M.Sc. student who performed the study and helped write the manuscript. MAI: carried out the computational chemistry researched and helped write the manuscript. DF: supervised the lifetime measurements. SM: biochemist who was in charge of solution preparation. NZ: microbiologist who was in charge of the biotechnological aspects of the study and help write the manuscript. EA: helped in macroscopic measurements of the fluorescent solutions. MD: supervised the entire study and helped write the manuscript.

Corresponding authors

Correspondence to Mark A. Iron or Mordechai Deutsch.

Ethics declarations

Conflicts of interest

There are no conflicting or competing interests to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2120 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feldman, H., Iron, M.A., Fixler, D. et al. Fluorophore spectroscopy in aqueous glycerol solution: the interactions of glycerol with the fluorophore. Photochem Photobiol Sci 20, 1397–1418 (2021). https://doi.org/10.1007/s43630-021-00096-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-021-00096-w

Navigation