Skip to main content

LAURDAN Fluorescence Properties in Membranes: A Journey from the Fluorometer to the Microscope

  • Chapter
  • First Online:
Fluorescent Methods to Study Biological Membranes

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 13))

Abstract

After 32 years since its introduction, the particular fluorescence properties of 6-lauroyl-2-(dimethylamino)-naphtalene (LAURDAN) in model and biological membranes are revisited. This review includes a historical perspective about the design, synthesis and initial description of the probe’s fluorescent properties, a discussion about the proposed mechanism of LAURDAN sensitivity to membrane lateral packing, and a detailed description of the definition of the Generalized Polarization function. This article includes as well examples of the different experimental strategies involving LAURDAN in model and biological membranes, using both bulk fluorescence spectroscopy measurements and spatially resolved information from fluorescence microscopy. The value of this probe in the study of membrane structure and dynamics is reflected in more than 330 papers reported in the existing literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACDAN:

6-Acethyl-2-dimethylamine-naphthalene

ACRYLODAN:

6-Acryloyl-2-dimethylaminonaphtalene

C-LAURDAN:

6-Dodecanoyl-2-[N-methyl-N-(carboxymethyl)amino]naphthalene

Cer:

(ceramide) N-acylsphingosine

Cholesterol:

(3β)-Cholest-5-en-3-ol

D2O:

Deuterium oxide

DANCA:

2′-(N,N-dimethyl)amino-6-naphtophyl-4-trans-cyclohexanoic acid

DHPC:

1,2-Di-O-hexadecyl-sn-glycero-3-phosphocholine

DLPC:

1,2-Dilauroyl-sn-glycero-3-phosphocholine

DMPC:

1,2-Dimiristoyl-sn-glycero-3-phosphocholine

DOPC:

1-Oleoyl-2-palmitoyl-sn-glycero-3-phosphocholine

DPPC:

1,2-Dipalmitoyl-sn-glycero-3-phosphocholine

Gal:

Galactose

GD1a :

NeuAc2α → 3Galβ1 → 3Gal-NAcβ1 → 4Gal (3 ← 2αNeuAc)β1 → 4Glcβ1 → 1’Cer

GalCer:

Galβ1 → 1’Cer

Glc:

Glucose

Gg3Cer:

(Asialo GM2) Gal-NAcβ1 → 4Galβ1 → 4Glcβ1 → 1’Cer

Gg4Cer:

(Asialo GM1) Galβ1 → 3Gal-NAcβ1 → 4Galβ1 → 4Glcβ1 → 1’Cer

GM3 :

NeuAc2α → 3Galβ1 → 4Glcβ1 → 1’Cer

GM2 :

Gal-NAcβ1 → 4Gal(3 ← 2αNeuAc)β1 → 4Glcβ1 → 1’Cer

GM1 :

Galβ1 → 3Gal-NAcβ1 → 4Gal(3 ← 2αNeuAc)β1 → 4Glcβ1 → 1’Cer

GP:

Generalized Polarization function

GPex :

Generalized Polarization, excitation

GPem :

Generalized Polarization, emission

GT1b :

NeuAc2α → 3Galβ1 → 3GalNAcβ1 → 4Gal(3 ← 2αNeuAc8 ← 2αNeuAc)β1 → 4Glcβ1 → 1’Cer

LAURDAN:

6-Dodecanoyl-2-dimethylamine-naphthalene

LAURISAN:

2-Diisopropylamino-6-lauroylnaphthalene

LAURMEN:

2-Methoxy-6-lauroylnapthalene

LAURNA:

2-Hydroxy-6-lauroylnapthalene

ld :

Liquid disordered phase

lo :

Liquid ordered phase

NeuAc:

Neuraminic acid

PATMAN:

6-Palmitoyl-2-[[(2-trimethylammonium)ethyl]methyl]amino] naphthalene

Phre:

(phrenosine) Galβ1 → 1’(N-[α-OH]acylsphingosine)

PRODAN:

6-Propionyl-2-dimethylamine-naphthalene

so :

Solid ordered (gel) phase

Sphingomyelin:

N-acyl-D-erythro-sphingosylphosphorylcholine

Sulf:

(Sulfatide) HSO3 → 3Galβ1 → 1’Cer

TPEFM:

Two photon excitation fluorescence microscopy

References

  1. Weber G, Farris FJ (1979) Synthesis and spectral properties of a hydrophobic fluorescent probe: 6-propionyl-2-(dimethylamino)naphthalene. Biochemistry 18(14):3075–3078

    Article  CAS  Google Scholar 

  2. Lippert E (1957) Spektroskopische bestimmung des dipolmomentes aromatischer verbindungen im ersten angeregten singulettzustand. Z Elektrochem 61:962–975

    CAS  Google Scholar 

  3. Macgregor RB, Weber G (1981) Fluorophores in polar media: spectral effects of the Langevin distribution of electrostatic interactions. Ann NY Acad Sci 366:140–154

    Article  CAS  Google Scholar 

  4. Lakowicz JR, Weber G (1973) Quenching of protein fluorescence by oxygen. Detection of structural fluctuations in proteins on the nanosecond time scale Biochemistry 12(21):4171–4179

    CAS  Google Scholar 

  5. Macgregor RB, Weber G (1986) Estimation of the polarity of the protein interior by optical spectroscopy. Nature 319(6048):70–73

    Article  CAS  Google Scholar 

  6. Prendergast FG, Meyer M, Carlson GL, Iida S, Potter JD (1983) Synthesis, spectral properties, and use of 6-acryloyl-2-dimethylaminonaphthalene (acrylodan). A thiol-selective, polarity-sensitive fluorescent probe. J Biol Chem 258 (12):7541–7544

    Google Scholar 

  7. Lakowicz JR, Bevan DR, Maliwal BP, Cherek H, Balter A (1983) Synthesis and characterization of a fluorescence probe of the phase transition and dynamic properties of membranes. Biochemistry 22:5714–5722

    Article  CAS  Google Scholar 

  8. Parasassi T, Krasnowska EK, Bagatolli LA, Gratton E (1998) LAURDAN and PRODAN as polarity sensitive fluorescent membrane probes. J Fluorescence 8(4):365–373

    Article  CAS  Google Scholar 

  9. Kim HM, Choo HJ, Jung SY, Ko YG, Park WH, Jeon SJ, Kim CH, Joo T, Cho BR (2007) A two-photon fluorescent probe for lipid raft imaging: C-LAURDAN. ChemBioChem 8(5):553–559

    Article  CAS  Google Scholar 

  10. Dodes Traian MM, Gonzalez Flecha L, Levi V (2011) Imaging lipid lateral organization in membranes with C-LAURDAN in a confocal microscope. J Lipid Res. doi:jlr.D021311 [pii] 10.1194/jlr.D021311

  11. Lakowicz JR, Sheppard JR (1981) Fluorescence spectroscopic studies of Huntington fibroblast membranes. Am J Human Genet 33(2):155–165

    CAS  Google Scholar 

  12. Sumbilla C, Lakowicz JR (1982) Fluorescence studies of red blood cell membranes from individuals with Huntington’s disease. J Neurochem 38(6):1699–1708

    Article  CAS  Google Scholar 

  13. Parasassi T, Conti F, Gratton E (1986) Time-resolved fluorescence emission spectra of LAURDAN in phospholipid vesicles by multifrequency phase and modulation fluorometry. Cell Mol Biol 32(1):103–108

    CAS  Google Scholar 

  14. Parasassi T, Conti F, Gratton E (1986) Fluorophores in a polar medium: time dependence of emission spectra detected by multifrequency phase and modulation fluorometry. Cell Mol Biol 32(1):99–102

    CAS  Google Scholar 

  15. Parasassi T, De Stasio G, d’Ubaldo A, Gratton E (1990) Phase fluctuation in phospholipid membranes revealed by LAURDAN fluorescence. Biophys J 57(6):1179–1186

    Article  CAS  Google Scholar 

  16. Parasassi T, De Stasio G, Ravagnan G, Rusch RM, Gratton E (1991) Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of LAURDAN fluorescence. Biophys J 60(1):179–189

    Article  CAS  Google Scholar 

  17. Krasnowska EK, Bagatolli LA, Gratton E, Parasassi T (2001) Surface properties of cholesterol-containing membranes detected by PRODAN fluorescence. Biochim Biophys Acta 1511(2):330–340

    Article  CAS  Google Scholar 

  18. Krasnowska EK, Gratton E, Parasassi T (1998) PRODAN as a membrane surface fluorescence probe: partitioning between water and phospholipid phases. Biophys J 74(4):1984–1993

    Article  CAS  Google Scholar 

  19. Chong PL (1988) Effects of hydrostatic pressure on the location of PRODAN in lipid bilayers and cellular membranes. Biochemistry 27(1):399–404

    Article  CAS  Google Scholar 

  20. Chong PL-G (1990) Interactions of LAURDAN and PRODAN with membranes at high pressure. High Pressure Research 5:761–763

    Article  Google Scholar 

  21. Zeng J, Chong PL (1995) Effect of ethanol-induced lipid interdigitation on the membrane solubility of PRODAN, acdan, and LAURDAN. Biophys J 68(2):567–573

    Article  CAS  Google Scholar 

  22. Antollini SS, Barrantes FJ (1998) Disclosure of discrete sites for phospholipid and sterols at the protein-lipid interface in native acetylcholine receptor-rich membrane. Biochemistry 37(47):16653–16662

    Article  CAS  Google Scholar 

  23. Jurkiewicz P, Olzynska A, Langner M, Hof M (2006) Headgroup hydration and mobility of dotap/dopc bilayers: A fluorescence solvent relaxation study. Langmuir 22(21):8741–8749

    Article  CAS  Google Scholar 

  24. Olzynska A, Zan A, Jurkiewicz P, Sykora J, Grobner G, Langner M, Hof M (2007) Molecular interpretation of fluorescence solvent relaxation of PATMAN and 2 h NMR experiments in phosphatidylcholine bilayers. Chem Phys Lipids 147(2):69–77

    Article  CAS  Google Scholar 

  25. Hutterer R, Schneider FW, Sprinz H, Hof M (1996) Binding and relaxation behaviour of PRODAN and PATMAN in phospholipid vesicles: A fluorescence and 1 h NMR study. Biophys Chem 61(2–3):151–160

    Article  CAS  Google Scholar 

  26. Jurkiewicz P, Sykora J, Olzynska A, Humpolickova J, Hof M (2005) Solvent relaxation in phospholipid bilayers: principles and recent applications. J Fluorescence 15(6):883–894

    Article  CAS  Google Scholar 

  27. Bagatolli LA, Gratton E (2000) A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: A two-photon fluorescence microscopy study. Biophys J 79(1):434–447

    Article  CAS  Google Scholar 

  28. Bagatolli LA, Gratton E (2000) Two photon fluorescence microscopy of coexisting lipid domains in giant unilamellar vesicles of binary phospholipid mixtures. Biophys J 78(1):290–305

    Article  CAS  Google Scholar 

  29. Parasassi T, Ravagnan G, Rusch RM, Gratton E (1993) Modulation and dynamics of phase properties in phospholipid mixtures detected by LAURDAN fluorescence. Photochem Photobiol 57(3):403–410

    Article  CAS  Google Scholar 

  30. Bagatolli LA, Gratton E, Fidelio GD (1998) Water dynamics in glycosphingolipid aggregates studied by LAURDAN fluorescence. Biophys J 75(1):331–341

    Article  CAS  Google Scholar 

  31. Bagatolli LA, Maggio B, Aguilar F, Sotomayor CP, Fidelio GD (1997) LAURDAN properties in glycosphingolipid-phospholipid mixtures: a comparative fluorescence and calorimetric study. Biochim Biophys Acta 1325(1):80–90

    Article  CAS  Google Scholar 

  32. Parasassi T, Gratton E (1992) Packing of phospholipid vesicles studied by oxygen quenching of LAURDAN fluorescence. J Fluorescence 2(3):167–174

    Article  CAS  Google Scholar 

  33. Bagatolli LA, Parasassi T, Fidelio GD, Gratton E (1999) A model for the interaction of 6-lauroyl-2-(n, n-dimethylamino)naphthalene with lipid environments: Implications for spectral properties. Photochem Photobiol 70(4):557–564

    Article  CAS  Google Scholar 

  34. Viard M, Gallay J, Vincent M, Meyer O, Robert B, Paternostre M (1997) LAURDAN solvatochromism: solvent dielectric relaxation and intramolecular excited-state reaction. Biophys J 73(4):2221–2234

    Article  CAS  Google Scholar 

  35. Vincent M, de Foresta B, Gallay J (2005) Nanosecond dynamics of a mimicked membrane-water interface observed by time-resolved stokes shift of LAURDAN. Biophys J 88(6):4337–4350

    Article  CAS  Google Scholar 

  36. Parasassi T, Gratton E, Yu WM, Wilson P, Levi M (1997) Two-photon fluorescence microscopy of LAURDAN generalized polarization domains in model and natural membranes. Biophys J 72(6):2413–2429

    Article  CAS  Google Scholar 

  37. Parasassi T, Gratton E (1995) Membrane lipid domains and dynamics as detected by LAURDAN fluorescence. J Fluorescence 5(1):59–69

    Article  CAS  Google Scholar 

  38. Celli A, Gratton E (2010) Dynamics of lipid domain formation: fluctuation analysis. Biochim Biophys Acta 1798(7):1368–1376

    Article  CAS  Google Scholar 

  39. Jurkiewicz P, Cwiklik L, Jungwirth P, Hof M (2012) Lipid hydration and mobility: an interplay between fluorescence solvent relaxation experiments and molecular dynamics simulations. Biochimie 94(1):26–32

    Article  CAS  Google Scholar 

  40. Jameson DM, Croney JC, Moens PD (2003) Fluorescence: basic concepts, practical aspects, and some anecdotes. Methods Enzymol 360:1–43

    Article  CAS  Google Scholar 

  41. Weber G (1952) Polarization of the fluorescence of macromolecules. I. Theory and experimental method. Biochem J 51(2):145–155

    CAS  Google Scholar 

  42. Henshaw JB, Olsen CA, Farnbach AR, Nielson KH, Bell JD (1998) Definition of the specific roles of lysolecithin and palmitic acid in altering the susceptibility of dipalmitoylphosphatidylcholine bilayers to phospholipase a2. Biochemistry 37(30):10709–10721

    Article  CAS  Google Scholar 

  43. Parasassi T, Loiero M, Raimondi M, Ravagnan G, Gratton E (1993) Absence of lipid gel-phase domains in seven mammalian cell lines and in four primary cell types. Biochim Biophys Acta 1153(2):143–154

    Article  CAS  Google Scholar 

  44. Vanounou S, Pines D, Pines E, Parola AH, Fishov I (2002) Coexistence of domains with distinct order and polarity in fluid bacterial membranes. Photochem Photobiol 76(1):1–11

    Article  CAS  Google Scholar 

  45. Nielsen SB, Otzen DE (2010) Impact of the antimicrobial peptide novicidin on membrane structure and integrity. J Colloid Interface Sci 345:248–256

    Article  CAS  Google Scholar 

  46. Parasassi T, Di Stefano M, Loiero M, Ravagnan G, Gratton E (1994) Cholesterol modifies water concentration and dynamics in phospholipid bilayers: a fluorescence study using LAURDAN probe. Biophys J 66(3 Pt 1):763–768

    Article  CAS  Google Scholar 

  47. Parasassi T, Di Stefano M, Loiero M, Ravagnan G, Gratton E (1994) Influence of cholesterol on phospholipid bilayers phase domains as detected by LAURDAN fluorescence. Biophys J 66(1):120–132

    Article  CAS  Google Scholar 

  48. Parasassi T, Giusti AM, Raimondi M, Gratton E (1995) Abrupt modifications of phospholipid bilayer properties at critical cholesterol concentrations. Biophys J 68(5):1895–1902

    Article  CAS  Google Scholar 

  49. Arnulphi C, Levstein PR, Ramia ME, Martin CA, Fidelio GD (1997) Ganglioside hydration study by 2h-NMR: dependence on temperature and water/lipid ratio. J Lipid Res 38(7):1412–1420

    CAS  Google Scholar 

  50. Ipsen JH, Karlstrom G, Mouritsen OG, Wennerstrom H, Zuckermann MJ (1987) Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim Biophys Acta 905(1):162–172

    Article  CAS  Google Scholar 

  51. Tang D, Chong PL (1992) E/m dips. Evidence for lipids regularly distributed into hexagonal super-lattices in pyrene-pc/dmpc binary mixtures at specific concentrations. Biophys J 63(4):903–910

    Article  CAS  Google Scholar 

  52. Virtanen JA, Somerharju PJ, KPK J (1988) Prediction of patterns for the regular distribution of soluted guest molecules in liquid crystalline phospholipid membranes. J Mol Electron 4:233–236

    Google Scholar 

  53. Yu W, So PT, French T, Gratton E (1996) Fluorescence generalized polarization of cell membranes: a two-photon scanning microscopy approach. Biophys J 70(2):626–636

    Article  CAS  Google Scholar 

  54. Bagatolli L, Gratton E, Khan TK, Chong PL (2000) Two-photon fluorescence microscopy studies of bipolar tetraether giant liposomes from thermoacidophilic archaebacteria sulfolobus acidocaldarius. Biophys J 79(1):416–425

    Article  CAS  Google Scholar 

  55. Dietrich C, Bagatolli LA, Volovyk ZN, Thompson NL, Levi M, Jacobson K, Gratton E (2001) Lipid rafts reconstituted in model membranes. Biophys J 80(3):1417–1428

    Article  CAS  Google Scholar 

  56. Brewer J, Bernardino de la Serna J, Wagner K, Bagatolli LA (2010) Multiphoton excitation fluorescence microscopy in planar membrane systems. Biochim Biophys Acta 1798(7):1301–1308

    Article  CAS  Google Scholar 

  57. Wheeler G, Tyler KM (2011) Widefield microscopy for live imaging of lipid domains and membrane dynamics. Biochim Biophys Acta 1808(3):634–641

    Article  CAS  Google Scholar 

  58. Weber PMW, Schneckenburger H (2010) Fluorescence imaging of membrane dynamics in living cells. J Biomed Opt 15(4):046017

    Article  Google Scholar 

  59. Bagatolli LA (2006) To see or not to see: Lateral organization of biological membranes and fluorescence microscopy. Biochim Biophys Acta 1758(10):1541–1556

    Article  CAS  Google Scholar 

  60. Bagatolli LA, Gratton E (2001) Direct observation of lipid domains in free-standing bilayers using two-photon excitation fluorescence microscopy. J Fluorescence 11(3):141–160

    Article  CAS  Google Scholar 

  61. Juhasz J, Davis JH, Sharom FJ (2010) Fluorescent probe partitioning in giant unilamellar vesicles of “lipid raft” mixtures. Biochem J 430(3):415–423

    Article  CAS  Google Scholar 

  62. Korlach J, Schwille P, Webb WW, Feigenson GW (1999) Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc Natl Acad Sci USA 96(15):8461–8466

    Article  CAS  Google Scholar 

  63. Bagatolli LA, Gratton E (1999) Two-photon fluorescence microscopy observation of shape changes at the phase transition in phospholipid giant unilamellar vesicles. Biophys J 77(4):2090–2101

    Article  CAS  Google Scholar 

  64. Fidorra M, Duelund L, Leidy C, Simonsen AC, Bagatolli LA (2006) Absence of fluid-ordered/fluid-disordered phase coexistence in ceramide/popc mixtures containing cholesterol. Biophys J 90(12):4437–4451

    Article  CAS  Google Scholar 

  65. Fidorra M, Heimburg T, Bagatolli LA (2009) Direct visualization of the lateral structure of porcine brain cerebrosides/popc mixtures in presence and absence of cholesterol. Biophys J 97(1):142–154

    Article  CAS  Google Scholar 

  66. Kubiak J, Brewer J, Hansen S, Bagatolli LA (2011) Lipid lateral organization on giant unilamellar vesicles containing lipopolysaccharides. Biophys J 100(4):978–986

    Article  CAS  Google Scholar 

  67. Sot J, Bagatolli LA, Goni FM, Alonso A (2006) Detergent-resistant, ceramide-enriched domains in sphingomyelin/ceramide bilayers. Biophys J 90(3):903–914

    Article  CAS  Google Scholar 

  68. Norlen L, Plasencia I, Bagatolli L (2008) Stratum corneum lipid organization as observed by atomic force, confocal and two-photon excitation fluorescence microscopy. Int J Cosmet Sci 30(6):391–411

    Article  CAS  Google Scholar 

  69. Plasencia I, Norlen L, Bagatolli LA (2007) Direct visualization of lipid domains in human skin stratum corneum’s lipid membranes: Effect of ph and temperature. Biophys J 93(9):3142–3155

    Article  CAS  Google Scholar 

  70. Bernardino de la Serna J, Oradd G, Bagatolli LA, Simonsen AC, Marsh D, Lindblom G, Perez-Gil J (2009) Segregated phases in pulmonary surfactant membranes do not show coexistence of lipid populations with differentiated dynamic properties. Biophys J 97(5):1381–1389

    Article  CAS  Google Scholar 

  71. Nag K, Pao JS, Harbottle RR, Possmayer F, Petersen NO, Bagatolli LA (2002) Segregation of saturated chain lipids in pulmonary surfactant films and bilayers. Biophys J 82(4):2041–2051

    Article  CAS  Google Scholar 

  72. Montes LR, Alonso A, Goni FM, Bagatolli LA (2007) Giant unilamellar vesicles electroformed from native membranes and organic lipid mixtures under physiological conditions. Biophys J 93(10):3548–3554

    Article  CAS  Google Scholar 

  73. Celli A, Beretta S, Gratton E (2008) Phase fluctuations on the micron-submicron scale in guvs composed of a binary lipid mixture. Biophys J 94(1):104–116

    Article  CAS  Google Scholar 

  74. Bagatolli LA, Sanchez SA, Hazlett T, Gratton E (2003) Giant vesicles, LAURDAN, and two-photon fluorescence microscopy: evidence of lipid lateral separation in bilayers. Methods Enzymol 360:481–500

    Article  CAS  Google Scholar 

  75. Parasassi T, Gratton E, Zajicek H, Levi M, Yu W (1999) Detecting membrane lipid microdomains by two-photon fluorescence microscopy. IEEE Eng Med Biol Mag 18(5):92–99

    Article  CAS  Google Scholar 

  76. Bernchou U, Brewer J, Midtiby HS, Ipsen JH, Bagatolli LA, Simonsen AC (2009) Texture of lipid bilayer domains. J Am Chem Soc 131(40):14130–14131

    Article  CAS  Google Scholar 

  77. Marsh D (1996) Lateral pressure in membranes. Biochim Biophys Acta 1286(3):183–223

    Article  CAS  Google Scholar 

  78. Gaus K, Gratton E, Kable EP, Jones AS, Gelissen I, Kritharides L, Jessup W (2003) Visualizing lipid structure and raft domains in living cells with two-photon microscopy. Proc Natl Acad Sci USA 100(26):15554–15559

    Article  CAS  Google Scholar 

  79. Romer W, Berland L, Chambon V, Gaus K, Windschiegl B, Tenza D, Aly MR, Fraisier V, Florent JC, Perrais D, Lamaze C, Raposo G, Steinem C, Sens P, Bassereau P, Johannes L (2007) Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature 450(7170):670–675

    Article  Google Scholar 

  80. Sun Y, Lo W, Lin SJ, Jee SH, Dong CY (2004) Multiphoton polarization and generalized polarization microscopy reveal oleic-acid-induced structural changes in intercellular lipid layers of the skin. Opt Lett 29(17):2013–2015

    Article  CAS  Google Scholar 

  81. Carrer DC, Vermehren C, Bagatolli LA (2008) Pig skin structure and transdermal delivery of liposomes: a two photon microscopy study. J Control Release 132(1):12–20

    Article  CAS  Google Scholar 

  82. Bloksgaard M, Svane-Knudsen V, Sorensen JA, Bagatolli L, Brewer J (2012) Structural characterization and lipid composition of acquired cholesteatoma: a comparative study with normal skin. Otol Neurotol 33(2):177–183

    Article  Google Scholar 

  83. Bagatolli LA, Ipsen JH, Simonsen AC, Mouritsen OG (2010) An outlook on organization of lipids in membranes: searching for a realistic connection with the organization of biological membranes. Prog Lipid Res 49(4):378–389

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author is greatly indebted to the following: Jonathan Brewer, Gerardo Fidelio, Enrico Gratton, Theodore Hazlett, David Jameson, Parkson Lee-Gau Chong, Tiziana Parasassi, Susana Sanchez, Patricio Sotomayor, Roberto Stock, and Gregorio Weber for the stimulating scientific discussions concerning the 2-(dimethylamino)-6-acylnaphtalene derivatives. The author wants to thank his colleagues at the Center for Biomembrane Physics (MEMPHYS), particularly Ole Mouritsen for his support during the last 10 years in Denmark. Part of the research presented in this article was supported by the Danish Research Council (FNU and FSS) and the Danish National Research Foundation (which supports MEMPHYS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Bagatolli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bagatolli, L.A. (2012). LAURDAN Fluorescence Properties in Membranes: A Journey from the Fluorometer to the Microscope. In: Mély, Y., Duportail, G. (eds) Fluorescent Methods to Study Biological Membranes. Springer Series on Fluorescence, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4243_2012_42

Download citation

Publish with us

Policies and ethics