Skip to main content
Log in

Surface integrity enhancement of austenitic stainless steel treated by ultrasonic burnishing with two burnishing tips

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

A set of ultrasonic burnishing equipment with two different burnishing tips was designed and manufactured, with which a series of experiments were performed to explore the effects of process parameters and burnishing tips on the surface integrity of austenitic stainless steel material being treated by ultrasonic burnishing (UB). Based on the experiment data, the two surface treatments, i.e. UB with ball tip and UB with roller tip, were comparatively assessed together with the other two surface machining methods of fine turning and grinding. As a further study, a microscopic FE model was built to investigate the three-dimensional transient stress and strain field inside the being treated material. It was found that parameter combination is determinative to surface finishing in UB process, and static pressure and burnishing pass are supposed to be the two most significant parameters for surface integrity of the treated sample. On the whole, roller tip is more preferable to achieve good surface enhancement than ball tip. The superposition of ultrasonic vibration leads to the dynamic change of the stress and strain field in UB, resulting in the oscillating propagation of stress wave inside the material, which gives explanation for the good performance of UB than that of conventional burnishing without ultrasonic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Nalbant M, Yildiz Y. Effect of cryogenic cooling in milling process of AISI 304 stainless steel. Trans Nonferrous Meter Soc China (Engl Ed). 2011;21:72–9. https://doi.org/10.1016/S1003-6326(11)60680-8.

    Article  Google Scholar 

  2. Lu K, Lu J. Surface nanocrystallization (SNC) of metallic materials-presentation of the concept behind a new approach. J Mater Sci Technol. 1999;15:193–7.

    Google Scholar 

  3. Wu J, Zou S, Zhang Y, Gong S, Sun G, Ni Z, Cao Z, Che Z, Feng A. Microstructures and mechanical properties of β forging Ti17 alloy under combined laser shock processing and shot peening. Surf Coatings Technol. 2017;328:283–91. https://doi.org/10.1016/j.surfcoat.2017.08.069.

    Article  Google Scholar 

  4. Bin Tang C, Xin Liu D, Tang B, Hua Zhang X, Qin L, Song Liu C. Influence of plasma molybdenizing and shot-peening on fretting damage behavior of titanium alloy. Appl Surf Sci. 2016;390:946–58. https://doi.org/10.1016/j.apsusc.2016.08.146.

    Article  Google Scholar 

  5. Mizunuma S, Iizuka T, Mitsui K, Okumura H, Kohzu M. Grain refinement of magnesium alloy AZ31 under torsion extrusion with a square-hole die. Mater Sci Forum. 2010;654–656:711–4. https://doi.org/10.4028/www.scientific.net/MSF.654-656.711.

    Article  Google Scholar 

  6. Jahedi M, Paydar MH. Study on the feasibility of the torsion extrusion (TE) process as a severe plastic deformation method for consolidation of Al powder. Mater Sci Eng A. 2010;527:5273–9. https://doi.org/10.1016/j.msea.2010.04.088.

    Article  Google Scholar 

  7. Pu Z, Yang S, Song GL, Dillon OW, Puleo DA, Jawahir IS. Ultrafine-grained surface layer on Mg–Al–Zn alloy produced by cryogenic burnishing for enhanced corrosion resistance. Scr Mater. 2011;65:520–3. https://doi.org/10.1016/j.scriptamat.2011.06.013.

    Article  Google Scholar 

  8. Low KO, Wong KJ. Influence of ball burnishing on surface quality and tribological characteristics of polymers under dry sliding conditions. Tribol Int. 2011;44:144–53. https://doi.org/10.1016/j.triboint.2010.10.005.

    Article  Google Scholar 

  9. Joo SH, Kim HS. Comparison of deformation and microstructural evolution between equal channel angular pressing and forward extrusion using the dislocation cell mechanism-based finite element method. J Mater Sci. 2010;45:4705–10. https://doi.org/10.1007/s10853-010-4465-9.

    Article  Google Scholar 

  10. Chen H, Tang J, Lang X, Huang Y, He Y. Influences of dressing lead on surface roughness of ultrasonic-assisted grinding. Int J Adv Manuf Technol. 2014;71:2011–5. https://doi.org/10.1007/s00170-014-5636-7.

    Article  Google Scholar 

  11. Li K, He Y, Cho IS, Shin K. Effect of ultrasonic nanocrytalline surface modification on hardness and microstructural evolution of Cu–Sn alloy. Defect Diffus Forum. 2015;364:157–64. https://doi.org/10.4028/www.scientific.net/DDF.364.157.

    Article  Google Scholar 

  12. Dong Z, Liu Z, Li M, Luo JL, Chen W, Zheng W, Guzonas D. Effect of ultrasonic impact peening on the corrosion of ferritic-martensitic steels in supercritical water. J Nucl Mater. 2015;457:266–72. https://doi.org/10.1016/j.jnucmat.2014.11.028.

    Article  Google Scholar 

  13. Qinjian Z, Jianguo C, Huiying W. Ultrasonic Surface Strengthening of train axle material 30CrMoA. Procedia CIRP. 2016;42:853–7. https://doi.org/10.1016/j.procir.2016.03.007.

    Article  Google Scholar 

  14. Amanov A, Cho IS, Kim DE. Effectiveness of high-frequency ultrasonic peening treatment on the tribological characteristics of Cu-based sintered materials on steel substrate. Mater Des. 2013;45:118–24. https://doi.org/10.1016/j.matdes.2012.08.073.

    Article  Google Scholar 

  15. Vilhauer B, Bennett CR, Matamoros AB, Rolfe ST. Fatigue behavior of welded coverplates treated with ultrasonic impact treatment and bolting. Eng Struct. 2012;34:163–72. https://doi.org/10.1016/j.engstruct.2011.09.009.

    Article  Google Scholar 

  16. Yang Z, Qi L, Wang J, Ma Z, Wang Y, Wang D. Effect of ultrasonic impact treatment on the microstructure and mechanical properties of diffusion-bonded TC11 alloy joints. Arch Civ Mech Eng. 2019;19:1431–41. https://doi.org/10.1016/j.acme.2019.09.006.

    Article  Google Scholar 

  17. Wu B, Zhang L, Zhang J, Murakami RI, Pyoun YS. An investigation of ultrasonic nanocrystal surface modification machining process by numerical simulation. Adv Eng Softw. 2015;83:59–69. https://doi.org/10.1016/j.advengsoft.2015.01.011.

    Article  Google Scholar 

  18. Kayumov R, Sik Pyun Y, Suh CM, Murakami R. Mechanical and fatigue characteristics of Ti-6Al-4V extra low interstitial and solution-treated and annealed alloys after ultrasonic nanocrystal surface modification treatment. J Nanosci Nanotechnol. 2014;14:9430–5. https://doi.org/10.1166/jnn.2014.10164.

    Article  Google Scholar 

  19. Teimouri R, Amini S, Bami AB. Evaluation of optimized surface properties and residual stress in ultrasonic assisted ball burnishing of AA6061-T6. Meas J Int Meas Confed. 2018;116:129–39. https://doi.org/10.1016/j.measurement.2017.11.001.

    Article  Google Scholar 

  20. Liu Y, Zhao X, Wang D. Determination of the plastic properties of materials treated by ultrasonic surface rolling process through instrumented indentation. Mater Sci Eng A. 2014;600:21–31. https://doi.org/10.1016/j.msea.2014.01.096.

    Article  Google Scholar 

  21. Mordyuk BN, Prokopenko GI. Ultrasonic impact peening for the surface properties’ management. J Sound Vib. 2007;308:855–66. https://doi.org/10.1016/j.jsv.2007.03.054.

    Article  Google Scholar 

  22. Liu X, Wu D, Zhang J, Hu X, Cui P. Analysis of surface texturing in radial ultrasonic vibration-assisted turning. J Mater Process Technol. 2019;267:186–95. https://doi.org/10.1016/j.jmatprotec.2018.12.021.

    Article  Google Scholar 

  23. Bozdana AT, Gindy NNZ. Comparative experimental study on effects of conventional and ultrasonic deep cold rolling processes on Ti–6Al–4V. Mater Sci Technol. 2008;24:1378–84. https://doi.org/10.1179/174328408x302431.

    Article  Google Scholar 

  24. Zhang M, Deng J, Liu Z, Zhou Y. Investigation into contributions of static and dynamic loads to compressive residual stress fields caused by ultrasonic surface rolling. Int J Mech Sci. 2019. https://doi.org/10.1016/j.ijmecsci.2019.105144.

    Article  Google Scholar 

  25. Cheng M, Zhang D, Chen H, Qin W. Development of ultrasonic thread root rolling technology for prolonging the fatigue performance of high strength thread. J Mater Process Technol. 2014;214:2395–401. https://doi.org/10.1016/j.jmatprotec.2014.05.019.

    Article  Google Scholar 

  26. Jerez-Mesa R, Travieso-Rodriguez JA, Gomez-Gras G, Lluma-Fuentes J. Development, characterization and test of an ultrasonic vibration-assisted ball burnishing tool. J Mater Process Technol. 2018;257:203–12. https://doi.org/10.1016/j.jmatprotec.2018.02.036.

    Article  Google Scholar 

  27. Travieso-Rodriguez JA, Gomez-Gras G, Dessein G, Carrillo F, Alexis J, Jorba-Peiro J, Aubazac N. Effects of a ball-burnishing process assisted by vibrations in G10380 steel specimens. Int J Adv Manuf Technol. 2015;81:1757–65. https://doi.org/10.1007/s00170-015-7255-3.

    Article  Google Scholar 

  28. Huuki J, Hornborg M, Juntunen J. Influence of ultrasonic burnishing technique on surface quality and change in the dimensions of metal shafts. J Eng (USA). 2014;2014:5–7. https://doi.org/10.1155/2014/124247.

    Article  Google Scholar 

  29. Zhao W, Liu D, Zhang X, Zhou Y, Zhang R, Zhang H, Ye C. Improving the fretting and corrosion fatigue performance of 300M ultra-high strength steel using the ultrasonic surface rolling process. Int J Fatigue. 2019;121:30–8. https://doi.org/10.1016/j.ijfatigue.2018.11.017.

    Article  Google Scholar 

  30. Shen X, Gong X, Zhang J, Su G. An investigation of stress condition in vibration-assisted burnishing. Int J Adv Manuf Technol. 2019;105:1189–207. https://doi.org/10.1007/s00170-019-04128-9.

    Article  Google Scholar 

  31. Jerez-Mesa R, Gomez-Gras G, Travieso-Rodriguez JA. Surface roughness assessment after different strategy patterns of ultrasonic ball burnishing. Procedia Manuf. 2017;13:710–7. https://doi.org/10.1016/j.promfg.2017.09.116.

    Article  Google Scholar 

  32. Bozdana AT, Gindy NNZ, Li H. Deep cold rolling with ultrasonic vibrations—a new mechanical surface enhancement technique. Int J Mach Tools Manuf. 2005;45:713–8. https://doi.org/10.1016/j.ijmachtools.2004.09.017.

    Article  Google Scholar 

  33. Jinchun S, Zhiqiang JIA, Minxin Z, Engineering M. Influence of ultrasonic rolling and finishing processing parameters on surface roughness and hardness of 45 steel. Manuf Technol Mach Tool. 2016;2016:85–9.

    Google Scholar 

  34. Stalin John MR, Vinayagam BK. Investigation of roller burnishing process on aluminium 63400 material. Aust J Mech Eng. 2011;8:47–544. https://doi.org/10.1080/14484846.2011.11464594.

    Article  Google Scholar 

  35. Habibnejad-Korayem M, Mahmudi R, Ghasemi HM, Poole WJ. Tribological behavior of pure Mg and AZ31 magnesium alloy strengthened by Al2O3 nano-particles. Wear. 2010;268:405–12. https://doi.org/10.1016/j.wear.2009.08.031.

    Article  Google Scholar 

  36. Amanov A, Umarov R. The effects of ultrasonic nanocrystal surface modification temperature on the mechanical properties and fretting wear resistance of Inconel 690 alloy. Appl Surf Sci. 2018;441:515–29. https://doi.org/10.1016/j.apsusc.2018.01.293.

    Article  Google Scholar 

  37. Nestler A, Schubert A. Effect of machining parameters on surface properties in slide diamond burnishing of aluminium matrix composites. Mater Today Proc. 2015;2:S156–S161161. https://doi.org/10.1016/j.matpr.2015.05.033.

    Article  Google Scholar 

  38. Babu P, Ankamma K, Prasad T. Optimization of burnishing parameters by DOE and surface roughness, microstructure and micro hardness characteristics of AA6061 aluminium alloy in T6 condition. Int J Eng Res Appl. 2012;2:1139–1146. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.416.8697&rep=rep1&type=pdf. Accessed 3 Nov 2019.

  39. Ritchie RO. The conflicts between strength and toughness. Nat Mater. 2011;10:817–22. https://doi.org/10.1038/nmat3115.

    Article  Google Scholar 

  40. Warren AW, Guo YB. The impact of surface integrity by hard turning versus grinding on rolling contact fatigue—part I: comparison of fatigue life and acoustic emission signals. Fatigue Fract Eng Mater Struct. 2007;30:698–711. https://doi.org/10.1111/j.1460-2695.2007.01144.x.

    Article  Google Scholar 

  41. Liu Y, Wang L, Wang D. Finite element modeling of ultrasonic surface rolling process. J Mater Process Technol. 2011;211:2106–13. https://doi.org/10.1016/j.jmatprotec.2011.07.009.

    Article  Google Scholar 

  42. Lee CS, Park IG, Pyoun YS, Cho IS, Cho IH, Park J. Rolling contact fatigue characteristics of SAE52100 by ultrasonic nanocrystal surface modification technology. Int J Mod Phys B. 2010;24:3065–70. https://doi.org/10.1142/S0217979210066094.

    Article  Google Scholar 

  43. Teimouri R, Amini S. Analytical modeling of ultrasonic surface burnishing process: Evaluation of through depth localized strain. Int J Mech Sci. 2019;151:118–32. https://doi.org/10.1016/j.ijmecsci.2018.11.008.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China [grand numbers 51775285]; Key Research and Development Program of Shandong Province of China [grand number 2019GGX104093]; Project for the Innovation Team of Universities and Institutes in Jinan [grand number 2018GXRC005]; National Natural Science Foundation of China [grand numbers 51675289].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Hui Shen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 2130 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, YL., Shen, XH., Xu, GF. et al. Surface integrity enhancement of austenitic stainless steel treated by ultrasonic burnishing with two burnishing tips. Archiv.Civ.Mech.Eng 20, 79 (2020). https://doi.org/10.1007/s43452-020-00074-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-020-00074-6

Keywords

Navigation