Skip to main content
Log in

Functional approaches to the study of G-protein-coupled receptors in postmortem brain tissue: [35S]GTPγS binding assays combined with immunoprecipitation

  • Special Issue: Review
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

A Correction to this article was published on 06 May 2021

This article has been updated

Abstract

G-protein-coupled receptors (GPCRs) have an enormous biochemical importance as they bind to diverse extracellular ligands and regulate a variety of physiological and pathological responses. G-protein activation measures the functional consequence of receptor occupancy at one of the earliest receptor-mediated events. Receptor coupling to G-proteins promotes the GDP/GTP exchange on Gα subunits. Thus, modulation of the binding of the poorly hydrolysable GTP analog [35S]GTPγS to the Gα-protein subunit can be used as a functional approach to quantify GPCR interaction with agonist, antagonist or inverse agonist drugs. In order to determine receptor-mediated selective activation of the different Gα-proteins, [35S]GTPγS binding assays combined with immunodetection by specific antibodies have been developed and applied to physiological and pathological brain conditions. Currently, immunoprecipitation with magnetic beads and scintillation proximity assays are the most habitual techniques for this purpose. The present review summarizes the different procedures, advantages and limitations of the [35S]GTPγS binding assays combined with selective Gα-protein sequestration methods. Experience of functional coupling of several GPCRs to different Gα-proteins and recommendations for optimal performance in brain membranes are described. One of the biggest opportunities opened by these techniques is that they enable evaluation of biased agonism in the native tissue, which results in high interest in drug discovery. The available results derived from application of these functional methodologies to study GPCR dysfunctions in neuro-psychiatric disorders are also described. In conclusion, [35S]GTPγS binding combined with antibody-mediated immunodetection represents an useful method to separately evaluate the functional activity of drugs acting on GPCRs over each Gα-protein subtype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

Abbreviations

CNS:

Central nervous system

GPCR:

G-protein-coupled receptors

GDP:

Guanosine diphosphate

GTP:

Guanosine triphosphate

NEM:

N-Ethylmaleimide

PTX:

Pertussis toxin

SPA:

Scintillation proximity assay

[35S]GTPγS:

Sulfur 35-labelled guanosine-5′-O-(γ-thio)-triphosphate

GTPγS:

Guanosine 5′-O-(3-triphosphate)

References

  1. Zhao P, Furness SGB. The nature of efficacy at G protein-coupled receptors. Biochem Pharmacol. 2019;170:113647.

    Article  CAS  PubMed  Google Scholar 

  2. Hauser AS, Attwood MM, Rask-Andersen M, Schiöth HB, Gloriam DE. Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov. 2017;16:829–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wootten D, Christopoulos A, Marti-Solano M, Babu MM, Sexton PM. Mechanisms of signalling and biased agonism in G protein-coupled receptors. Nat Rev Mol Cell Biol. 2018;19:638–53.

    Article  CAS  PubMed  Google Scholar 

  4. Oldham WM, Hamm HE. Heterotrimeric G protein activation by G-protein-coupled receptors. Nat Rev Mol Cell Biol. 2008;9:60–71.

    Article  CAS  PubMed  Google Scholar 

  5. Harrison C, Traynor JR. The [35S]GTPγS binding assay: approaches and applications in pharmacology. Life Sci. 2003;74:489–508.

    Article  CAS  PubMed  Google Scholar 

  6. Hilf G, Gierschik P, Jakobs KH. Muscarinic acetylcholine receptor-stimulated binding of guanosine 5’-O-(3-thiotriphosphate) to guanine-nucleotide-binding proteins in cardiac membranes. Eur J Biochem. 1989;186:725–31.

    Article  CAS  PubMed  Google Scholar 

  7. Lorenzen A, Fuss M, Vogt H, Schwabe U. Measurement of guanine nucleotide-binding protein activation by A1 adenosine receptor agonists in bovine brain membranes: stimulation of guanosine-5’-O-(3-[35S]thio)triphosphate binding. Mol Pharmacol. 1993;44:115–23.

    CAS  PubMed  Google Scholar 

  8. Sim LJ, Selley DE, Childers SR. In vitro autoradiography of receptor-activated G proteins in rat brain by agonist-stimulated guanylyl 5’-[γ-[35S]thio]-triphosphate binding. Proc Natl Acad Sci USA. 1995;92:7242–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. González-Maeso J, Rodríguez-Puertas R, Gabilondo AM, Meana JJ. Characterization of receptor-mediated [35S]GTPγS binding to cortical membranes from postmortem human brain. Eur J Pharmacol. 2000;390:25–36.

    Article  PubMed  Google Scholar 

  10. González-Maeso J, Torre I, Rodríguez-Puertas R, García-Sevilla JA, Guimón J, Meana JJ. Effects of age, postmortem delay and storage time on receptor-mediated activation of G-proteins in human brain. Neuropsychopharmacology. 2002;26:468–78.

    Article  PubMed  Google Scholar 

  11. Seifert R, Wenzel-Seifert K. Constitutive activity of G-protein-coupled receptors: cause of disease and common property of wild-type receptors. Naunyn Schmiedebergs Arch Pharmacol. 2002;366:381–416.

    Article  CAS  PubMed  Google Scholar 

  12. DeLapp NW. The antibody-capture [35S]GTPγS scintillation proximity assay: a powerful emerging technique for analysis of GPCR pharmacology. Trends Pharmacol Sci. 2004;25:400–1.

    Article  CAS  PubMed  Google Scholar 

  13. Vassilatis DK, Hohmann JG, Zeng H, Li F, Ranchalis JE, Mortrud MT, et al. The G protein-coupled receptor repertoires of human and mouse. Proc Natl Acad Sci USA. 2003;100:4903–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Albizu L, Moreno JL, González-Maeso J, Sealfon SC. Heteromerization of G protein-coupled receptors: relevance to neurological disorders and neurotherapeutics. CNS Neurol Disord Drug Targets. 2010;9:636–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Meana JJ, Callado LF. Morentin B [Do post-mortem brain studies provide useful information for psychiatry?]. Rev Psiquiatr Salud Ment. 2014;7:101–3.

    Google Scholar 

  16. González-Maeso J, Meana JJ. Heterotrimeric G-proteins: insights into the neurobiology of mood disorders. Curr Neuropharmacol. 2006;4:127–38.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Galés C, Rebois RV, Hogue M, Trieu P, Breit A, Hébert TE, et al. Real-time monitoring of receptor and G-protein interactions in living cells. Nat Methods. 2005;2:177–84.

    Article  PubMed  Google Scholar 

  18. Drinovec L, Kubale V, Larsen JN, Vrecl M. Mathematical models for quantitative assessment of bioluminescence resonance energy transfer: application to seven transmembrane receptors oligomerization. Front Endocrinol. 2012;3:104.

    Article  Google Scholar 

  19. Kenakin T. Biased receptor signaling in drug discovery. Pharmacol Rev. 2019;71:267–315.

    Article  CAS  PubMed  Google Scholar 

  20. Smith JS, Lefkowitz RJ, Rajagopal S. Biased signalling: from simple switches to allosteric microprocessors. Nat Rev Drug Discov. 2018;17:243–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kenakin T. Agonist-receptor efficacy. II. Agonist trafficking of receptor signals. Trends Pharmacol Sci. 1995;16:232–8.

    Article  CAS  PubMed  Google Scholar 

  22. DeLapp NW, Gough WH, Kahl SD, Porter AC, Wiernicki TR, et al. GTPγS binding assays. In: Markossian S, Sittampalam GS, Grossman A, Brimacombe K, Arkin M, Auld D, et al., editors. The National center for advancing translational sciences. Bethesda: Eli Lilly & Company; 2012.

    Google Scholar 

  23. Akam EC, Carruthers AM, Nahorski SR, Challiss RAJ. Pharmacological characterization of type 1α metabotropic glutamate receptor-stimulated [35S]-GTPγS binding. Br J Pharmacol. 1997;121:1203–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Merritt EA, Hol WG. AB5 toxins. Curr Opin Struct Biol. 1995;5:165–71.

    Article  CAS  PubMed  Google Scholar 

  25. Winslow JW, Bradley JD, Smith JA, Neer EJ. Reactive sulfhydryl groups of alpha 39, a guanine nucleotide-binding protein from brain. Location and function. J Biol Chem. 1987;262:4501–7.

    Article  CAS  PubMed  Google Scholar 

  26. Takasaki J, Saito T, Taniguchi M, Kawasaki T, Moritani Y, Hayashi K, et al. A Novel Gαq/11-selective inhibitor. J Biol Chem. 2004;279:47438–45.

    Article  CAS  PubMed  Google Scholar 

  27. Nishimura A, Kitano K, Takasaki J, Taniguchi M, Mizuno N, Tago K, et al. Structural basis for the specific inhibition of heterotrimeric Gq protein by a small molecule. Proc Natl Acad Sci USA. 2010;107:13666–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Friedman E, Butkerait P, Wang HY. Analysis of receptor-stimulated and basal guanine nucleotide binding to membrane G proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Anal Biochem. 1993;214:171–8.

    Article  CAS  PubMed  Google Scholar 

  29. Friedman E, Wang HY. Receptor-mediated activation of G proteins is increased in postmortem brains of bipolar affective disorder subjects. J Neurochem. 1996;67:1145–52.

    Article  CAS  PubMed  Google Scholar 

  30. Wang HY, Friedman E. Receptor-mediated activation of G proteins is reduced in postmortem brains from Alzheimer’s disease patients. Neurosci Lett. 1994;173:37–9.

    Article  CAS  PubMed  Google Scholar 

  31. DeLapp NW, McKinzie JH, Sawyer BD, Vandergriff A, Falcone J, McClure D, et al. Determination of [35S]guanosine-5’-O-(3-thio)triphosphate binding mediated by cholinergic muscarinic receptors in membranes from Chinese hamster ovary cells and rat striatum using an anti-G protein scintillation proximity assay. J Pharmacol Exp Ther. 1999;289:946–55.

    CAS  PubMed  Google Scholar 

  32. Xia L, de Vries H, IJzerman AP, Heitman LH. Scintillation proximity assay (SPA) as a new approach to determine a ligand’s kinetic profile. A case in point for the adenosine A1 receptor. Purinergic Signal. 2016;12:115–26.

    Article  CAS  PubMed  Google Scholar 

  33. Berry J, Price-Jones M, Killian B. Use of scintillation proximity assay to measure radioligand binding to immobilized receptors without separation of bound from free ligand. Methods Mol Biol. 2012;897:79–94.

    Article  CAS  PubMed  Google Scholar 

  34. Cook N, Harris A, Hopkins A, Hughes K. Scintillation Proximity Assay (SPA) Technology to Study Biomolecular Interactions. Curr Protoc Protein Sci. 2002; Chapter 19:Unit 19.8.

  35. Erdozain AM, Diez-Alarcia R, Meana JJ, Callado LF. The inverse agonist effect of rimonabant on G protein activation is not mediated by the cannabinoid CB1 receptor: evidence from postmortem human brain. Biochem Pharmacol. 2012;83:260–8.

    Article  CAS  PubMed  Google Scholar 

  36. García-Bea A, Miranda-Azpiazu P, Muguruza C, Marmolejo-Martinez-Artesero S, Diez-Alarcia R, Gabilondo AM, et al. Serotonin 5-HT2A receptor expression and functionality in postmortem frontal cortex of subjects with schizophrenia: selective biased agonism via Gαi1-proteins. Eur Neuropsychopharmacol. 2019;29:1453–63.

    Article  PubMed  Google Scholar 

  37. Muneta-Arrate I, Diez-Alarcia R, Horrillo I, Meana JJ. Pimavanserin exhibits serotonin 5-HT2A receptor inverse agonism for Gαi1- and neutral antagonism for Gαq/11-proteins in human brain cortex. Eur Neuropsychopharmacol. 2020;36:83–9.

    Article  CAS  PubMed  Google Scholar 

  38. Odagaki Y, Toyoshima R. Muscarinic acetylcholine receptor-mediated activation of Gq in rat brain membranes determined by guanosine-5’-O-(3-[35S]thio)triphosphate ([35S]GTPγS) binding using an anti-G protein scintillation proximity assay. J Neural Transm (Vienna). 2012;119:525–32.

    Article  CAS  Google Scholar 

  39. Odagaki Y, Toyoshima R. Activation of Gq proteins coupled with 5-HT2 receptors in rat cerebral cortical membranes assessed by antibody-capture scintillation proximity assay/[35S]GTPγS binding. Pharmacology. 2013;92:2–10.

    Article  CAS  PubMed  Google Scholar 

  40. Odagaki Y, Kinoshita M, Toyoshima R. Pharmacological characterization of M1 muscarinic acetylcholine receptor-mediated Gq activation in rat cerebral cortical and hippocampal membranes. Naunyn Schmiedebergs Arch Pharmacol. 2013;386:937–47.

    Article  CAS  PubMed  Google Scholar 

  41. Moreno JL, Miranda-Azpiazu P, García-Bea A, Younkin J, Cui M, Kozlenkov A, et al. Allosteric signaling through an mGlu2 and 5-HT2A heteromeric receptor complex and its potential contribution to schizophrenia. Sci Signal. 2016;9:ra5.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ibarra-Lecue I, Mollinedo-Gajate I, Meana JJ, Callado LF, Diez-Alarcia R, Urigüen L. Chronic cannabis promotes pro-hallucinogenic signaling of 5-HT2A receptors through Akt/mTOR pathway. Neuropsychopharmacology. 2018;43:2028–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Diez-Alarcia R, Ibarra-Lecue I, Lopez-Cardona ÁP, Meana J, Gutierrez-Adán A, Callado LF, et al. Biased agonism of three different cannabinoid receptor agonists in mouse brain cortex. Front Pharmacol. 2016;7:415.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Odagaki Y. Guanosine-5′-O-(3-[35S]thio)triphosphate ([35S]GTPγS) binding/immunoprecipitation assay using magnetic beads coated with anti-Gα antibody. In: Odagaki Y, Borroto-Escuela DO, editors. Co-immunoprecipitation methods for brain tissue, neuromethods series, vol. 144. New York: Springer Nature; 2019. p. 97–107.

    Chapter  Google Scholar 

  45. Harder D, Fotiadis D. Measuring substrate binding and affinity of purified membrane transport proteins using the scintillation proximity assay. Nat Protoc. 2012;7:1569–78.

    Article  CAS  PubMed  Google Scholar 

  46. Hober S, Nord K, Linhult M. Protein A chromatography for antibody purification. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;848:40–7.

    Article  CAS  PubMed  Google Scholar 

  47. Ferrer M, Kolodin GD, Zuck P, Peltier R, Berry K, Mandala SM, et al. A fully automated [35S]GTPγS scintillation proximity assay for the high-throughput screening of Gi-linked G protein-coupled receptors. Assay Drug Dev Technol. 2003;1:261–73.

    Article  CAS  PubMed  Google Scholar 

  48. Plummer NW, Spicher K, Malphurs J, Akiyama H, Abramowitz J, Nürnberg B, et al. Development of the mammalian axial skeleton requires signaling through the Gαi subfamily of heterotrimeric G proteins. Proc Natl Acad Sci U S A. 2012;109:21366–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cussac D, Newman-Tancredi A, Duqueyroix D, Pasteau V, Millan MJ. Differential activation of Gq/11 and Gi3 proteins at 5-hydroxytryptamine2C receptors revealed by antibody capture assays: influence of receptor reserve and relationship to agonist-directed trafficking. Mol Pharmacol. 2002;62:578–89.

    Article  CAS  PubMed  Google Scholar 

  50. Richman DD, Cleveland PH, Oxman MN, Johnson KM. The binding of staphylococcal protein A by the sera of different animal species. J Immunol. 1982;128:2300–5.

    Article  CAS  PubMed  Google Scholar 

  51. Frank MB. Antibody binding to Protein A and Protein G beads. Oklahoma City: Oklahoma Medical Research; 1997.

    Google Scholar 

  52. Odagaki Y, Kinoshita M, Ota T, Meana JJ, Callado LF, Matsuoka I, et al. Functional coupling between adenosine A1 receptors and G-proteins in rat and postmortem human brain membranes determined with conventional guanosine-5’-O-(3-[35S]thio)triphosphate ([35S]GTPγS) binding or [35S]GTPγS/immunoprecipitation assay. Purinergic Signal. 2018;14:177–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Odagaki Y, Kinoshita M, Ota T, Meana JJ, Callado LF, García-Sevilla JA. Adenosine A1-receptors are selectively coupled to Gαi3 in postmortem human brain cortex: Guanosine-5’-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPγS) binding/immunoprecipitation study. Eur J Pharmacol. 2015;764:592–8.

    Article  CAS  PubMed  Google Scholar 

  54. Newman-Tancredi A, Cussac D, Marini L, Millan MJ. Antibody capture assay reveals bell-shaped concentration-response isotherms for 5-HT1A receptor-mediated Gαi3 activation: conformational selection by high-efficacy agonists, and relationship to trafficking of receptor signaling. Mol Pharmacol. 2002;62:590–601.

    Article  CAS  PubMed  Google Scholar 

  55. Mannoury la Cour C, Vidal S, Pasteau V, Cussac D, Millan MJ. Dopamine D1 receptor coupling to Gs/olf and Gq in rat striatum and cortex: a scintillation proximity assay (SPA)/antibody-capture characterization of benzazepine agonists. Neuropharmacology. 2007;52:1003–14.

    Article  CAS  PubMed  Google Scholar 

  56. Mannoury la Cour C, Herbelles C, Pasteau V, de Nanteuil G, Millan MJ. Influence of positive allosteric modulators on GABAB receptor coupling in rat brain: a scintillation proximity assay characterisation of G protein subtypes. J Neurochem. 2008;105:308–23.

    Article  PubMed  Google Scholar 

  57. Mannoury la Cour C, El Mestikawy S, Hanoun N, Hamon M, Lanfumey L. Regional differences in the coupling of 5-hydroxytryptamine-1A receptors to G proteins in the rat brain. Mol Pharmacol. 2006;70:1013–21.

    Article  PubMed  Google Scholar 

  58. Odagaki Y, Kinoshita M, Toyoshima R. Functional activation of Gαq via serotonin2A (5-HT2A) and muscarinic acetylcholine M1 receptors assessed by guanosine-5׳-O-(3-[35S]thio)triphosphate ([35S]GTPγS) binding / immunoprecipitation in rat brain membranes. Eur J Pharmacol. 2014;726:109–15.

    Article  CAS  PubMed  Google Scholar 

  59. Odagaki Y, Kinoshita M, Meana JJ, Callado LF, García-Sevilla JA. 5-HT2A receptor-mediated Gαq/11 activation in psychiatric disorders: a postmortem study. World J Biol Psychiatry. 2020;9:1–11.

    Google Scholar 

  60. Odagaki Y, Kinoshita M, Meana JJ, Callado LF, García-Sevilla JA. Functional coupling of M1 muscarinic acetylcholine receptor to Gαq/11 in dorsolateral prefrontal cortex from patients with psychiatric disorders: a postmortem study. Eur Arch Psychiatry Clin Neurosci. 2020;270:869–80.

    Article  PubMed  Google Scholar 

  61. Odagaki Y, Kinoshita M, Ota T, Meana JJ, Callado LF, García-Sevilla JA. Functional activation of Gαq coupled to 5-HT2A receptor and M1 muscarinic acetylcholine receptor in postmortem human cortical membranes. J Neural Transm (Vienna). 2017;124:1123–33.

    Article  CAS  Google Scholar 

  62. Odagaki Y, Kinoshita M, Ota T. Functional activation of Gαq/11 protein via α1-adrenoceptor in rat cerebral cortical membranes. Clin Exp Pharmacol Physiol. 2019;46:567–74.

    Article  CAS  PubMed  Google Scholar 

  63. Odagaki Y, Kinoshita M, Ota T. Dopamine-induced functional activation of Gαq mediated by dopamine D1-like receptor in rat cerebral cortical membranes. J Recept Signal Transduct Res. 2019;39:9–17.

    Article  CAS  PubMed  Google Scholar 

  64. Milligan G, Kostenis E. Heterotrimeric G-proteins: a short history. Br J Pharmacol. 2006;147(Suppl 1):46.

    Article  Google Scholar 

  65. Garibay JL, Kozasa T, Itoh H, Tsukamoto T, Matsuoka M, Kaziro Y. Analysis by mRNA levels of the expression of six G protein alpha-subunit genes in mammalian cells and tissues. Biochim Biophys Acta Biochimica Et Biophysica Acta. 1991;1094:193–9.

    Article  CAS  PubMed  Google Scholar 

  66. Kenakin T. Efficacy at g-protein-coupled receptors. Nat Rev Drug Discov. 2002;1:103–10.

    Article  CAS  PubMed  Google Scholar 

  67. Kelly E. Efficacy and ligand bias at the μ-opioid receptor. Br J Pharmacol. 2013;169:1430–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Colom M, Vidal B, Zimmer L. Is there a role for GPCR agonist radiotracers in PET neuroimaging? Front Mol Neurosci. 2019;12:255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Meana JJ, González-Maeso J, García-Sevilla JA, Guimón J. µ-opioid receptor and α2-adrenoceptor agonist stimulation of [35S]GTPγS binding to G-proteins in postmortem brains of opioid addicts. Mol Psychiatry. 2000;5:308–15.

    Article  CAS  PubMed  Google Scholar 

  70. Salah-Uddin H, Scarr E, Pavey G, Harris K, Hagan JJ, Dean B, et al. Altered M1 muscarinic acetylcholine receptor (CHRM1)-Gαq/11 coupling in a schizophrenia endophenotype. Neuropsychopharmacology. 2009;34:2156–66.

    Article  CAS  PubMed  Google Scholar 

  71. Porter AC, Bymaster FP, DeLapp NW, Yamada M, Wess J, Hamilton SE, et al. M1 muscarinic receptor signaling in mouse hippocampus and cortex. Brain Res. 2002;944:82–9.

    Article  CAS  PubMed  Google Scholar 

  72. McQuail JA, Davis KN, Miller F, Hampson RE, Deadwyler SA, Howlett AC, et al. Hippocampal Gαq11 but not Gαo-coupled receptors are altered in aging. Neuropharmacology. 2013;70:63–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wacker D, Stevens RC, Roth BL. How Ligands Illuminate GPCR Molecular Pharmacology. Cell. 2017;170:414–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Berg KA, Clarke WP. Making sense of pharmacology: inverse agonism and functional selectivity. Int J Neuropsychopharmacol. 2018;21:962–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Diez-Alarcia R, Yáñez-Pérez V, Muneta-Arrate I, Arrasate S, Lete E, Meana JJ, et al. Big data challenges targeting proteins in GPCR signaling pathways; combining PTML-ChEMBL models and [35S]GTPγS binding assays. ACS Chem Neurosci. 2019;10:4476–91.

    Article  CAS  PubMed  Google Scholar 

  76. Costa T, Herz A. Antagonists with negative intrinsic activity at delta opioid receptors coupled to GTP-binding proteins. Proc Natl Acad Sci USA. 1989;86:7321–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Aloyo VJ, Berg KA, Clarke WP, Spampinato U, Harvey JA. Inverse agonism at serotonin and cannabinoid receptors. Prog Mol Biol Transl Sci. 2010;91:1–40.

    Article  CAS  PubMed  Google Scholar 

  78. Deurwaerdère PD, Bharatiya R, Chagraoui A, Giovanni GD. Constitutive activity of 5-HT receptors: factual analysis. Neuropharmacology. 2020;168:107967.

    Article  PubMed  Google Scholar 

  79. Bond RA, Ijzerman AP. Recent developments in constitutive receptor activity and inverse agonism, and their potential for GPCR drug discovery. Trends Pharmacol Sci. 2006;27:92–6.

    Article  CAS  PubMed  Google Scholar 

  80. Chalmers DT, Behan DP. The use of constitutively active GPCRs in drug discovery and functional genomics. Nat Rev Drug Discov. 2002;1:599–608.

    Article  CAS  PubMed  Google Scholar 

  81. Aloyo VJ, Berg KA, Spampinato U, Clarke WP, Harvey JA. Current status of inverse agonism at serotonin2A 5-HT2A and 5-HT2C receptors. Pharmacol Ther. 2009;121:160–73.

    Article  CAS  PubMed  Google Scholar 

  82. Mannoury la Cour C, Chaput C, Touzard M, Millan MJ. An immunocapture/scintillation proximity analysis of Gαq/11 activation by native serotonin 5-HT2A receptors in rat cortex: blockade by clozapine and mirtazapine. Synapse. 2009;63:95–105.

    Article  CAS  PubMed  Google Scholar 

  83. Arunlakshana O, Schild HO. Some quantitative uses of drug antagonists. Br J Pharmacol Chemother. 1959;14:48–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Odagaki Y, Kinoshita M, Toyoshima R. Functional coupling between metabotropic glutamate receptors and G-proteins in rat cerebral cortex assessed by guanosine-5’-O-(3-[35S]thio)triphosphate binding assay. Basic Clin Pharmacol Toxicol. 2011;109:175–85.

    Article  CAS  PubMed  Google Scholar 

  85. Regard JB, Sato IT, Coughlin SR. Anatomical profiling of G protein-coupled receptor expression. Cell. 2008;135:561–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jin LQ, Wang HY, Friedman E. Stimulated D1 dopamine receptors couple to multiple Gα proteins in different brain regions. J Neurochem. 2001;78:981–90.

    Article  CAS  PubMed  Google Scholar 

  87. Madariaga-Mazón A, Marmolejo-Valencia AF, Li Y, Toll L, Houghten RA, Martinez-Mayorga K. µ-Opioid receptor biased ligands: A safer and painless discovery of analgesics? Drug Discov Today. 2017;22:1719–29.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Singla NK, Skobieranda F, Soergel DG, Salamea M, Burt DA, Demitrack MA, et al. APOLLO-2: a randomized, placebo and active-controlled phase III study investigating oliceridine (TRV130), a G protein-biased ligand at the μ-opioid receptor, for management of moderate to severe acute pain following abdominoplasty. Pain Pract. 2019;19:715–31.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Kliewer A, Gillis A, Hill R, Schmiedel F, Bailey C, Kelly E, et al. Morphine-induced respiratory depression is independent of β-arrestin2 signalling. Br J Pharmacol. 2020;177:2923–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Conibear AE, Kelly E. A biased view of μ-opioid receptors? Mol Pharmacol. 2019;96:542–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gillis A, Kliewer A, Kelly E, Henderson G, Christie MJ, Schulz S, et al. Critical assessment of G protein-biased agonism at the μ-opioid receptor. Trends Pharmacol Sci. 2020;41:947–59.

    Article  CAS  PubMed  Google Scholar 

  92. López-Giménez JF, González-Maeso J. Hallucinogens and serotonin 5-HT2A receptor-mediated signaling pathways. Curr Top Behav Neurosci. 2018;36:45–73.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Jukić MM. Can Gi1 biased 5-HT2A inverse agonists improve the treatment of psychosis? Eur Neuropsychopharmacol. 2020;37:100–1.

    Article  PubMed  Google Scholar 

  94. Cowburn RF, Wiehager B, Ravid R, Winblad B. Acetylcholine muscarinic M2 receptor stimulated [35S]GTPγS binding shows regional selective changes in Alzheimer’s disease postmortem brain. Neurodegeneration. 1996;5:19–26.

    Article  CAS  PubMed  Google Scholar 

  95. Manji HK. G proteins: implications for psychiatry. Am J Psychiatry. 1992;149:746–60.

    Article  CAS  PubMed  Google Scholar 

  96. Pacheco MA, Stockmeier C, Meltzer HY, Overholser JC, Dilley GE, Jope RS. Alterations in phosphoinositide signaling and G-protein levels in depressed suicide brain. Brain Res. 1996;723:37–45.

    Article  CAS  PubMed  Google Scholar 

  97. Odagaki Y, Kinoshita, Meana JJ, Callado LF, García-Sevilla JA. 5HT2A receptor- and M1 muscarinic acetylcholine receptor-mediated activation Gαq/11 in postmortem dorsolateral prefrontal cortex of opiate addicts. Pharmacol Rep (in this issue).

  98. Albert PR, Vahid-Ansari F. The 5-HT1A receptor: signaling to behavior. Biochimie. 2019;161:34–45.

    Article  CAS  PubMed  Google Scholar 

  99. Busquets-Garcia A, Bains J, Marsicano G. CB1 receptor signaling in the brain: extracting specificity from ubiquity. Neuropsychopharmacology. 2018;43:4–20.

    Article  CAS  PubMed  Google Scholar 

  100. Ellaithy A, Younkin J, González-Maeso J, Logothetis DE. Positive allosteric modulators of metabotropic glutamate 2 receptors in schizophrenia treatment. Trends Neurosci. 2015;38:506–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Labrecque J, Anastassov V, Lau G, Darkes M, Mosi R, Fricker SP. The development of an europium-GTP assay to quantitate chemokine antagonist interactions for CXCR4 and CCR5. Assay Drug Dev Technol. 2005;3:637–48.

    Article  CAS  PubMed  Google Scholar 

  102. Koval A, Kopein D, Purvanov V, Katanaev VL. Europium-labeled GTP as a general nonradioactive substitute for [35S]GTPγS in high-throughput G protein studies. Anal Biochem. 2010;397:202–7.

    Article  CAS  PubMed  Google Scholar 

  103. Jean-Charles P-Y, Kaur S, Shenoy SK. G Protein-coupled receptor signaling through β-arrestin-dependent mechanisms. J Cardiovasc Pharmacol. 2017;70:142–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Spanish R + D + i Programme and the European Regional Development Funds (SAF2017-88126R), and the Basque Government (IT1211/19 to JJM; ELKARTEK Programme KK-2019/00049 to RD-A). IM-A was recipient of a fellowship from the Basque Government. RD-A, JJM and IM-A are members of the PSYBIAS Consortium, supported by Eranet Neuron Programme.

Author information

Authors and Affiliations

Authors

Contributions

RD-A, YO and JMM contributed to the conception, design and supervision of the work. RD-A, YO, PM-A and IM-A undertook experimental procedures and data analyses included in the review. RD-A, AMG, JMM and IM-A drafted the first version of the manuscript. All authors contributed adding critical information in the different sections and helped to shape the manuscript. All authors approved the submitted version.

Corresponding author

Correspondence to Itziar Muneta-Arrate.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest in relation to the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diez-Alarcia, R., Odagaki, Y., Miranda-Azpiazu, P. et al. Functional approaches to the study of G-protein-coupled receptors in postmortem brain tissue: [35S]GTPγS binding assays combined with immunoprecipitation. Pharmacol. Rep 73, 1079–1095 (2021). https://doi.org/10.1007/s43440-021-00253-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-021-00253-z

Keywords

Navigation