Skip to main content
Log in

High-frequency response current direct demodulation method for sensorless control of interior permanent magnet synchronous motor drives

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

Sensorless schemes are mainly used in fault-tolerant control of interior permanent magnet synchronous motor (IPMSM) drives. Traditional sensorless methods with injection of high-frequency (HF) carrier signals into the stationary reference frame have a stable performance. However, phase shifts caused by conventional high-pass filters (HPFs) decrease the estimation accuracy. Besides, the demodulation process is usually complicated, which increases the difficulty of application. To solve these problems, this study presents an HF-induced current direct demodulation method. Rotor position angle can be solved from the sampled currents at adjacent moments without demodulation signals. Therefore, the errors related to filters in the rotor position estimation are eliminated. Besides, the efficiency of the demodulation algorithm is improved. Furthermore, an online compensation method for cross-saturation effect is proposed. Experimental results verify that the proposed strategy can obtain an accurate rotor position with good steady-state and dynamic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Gong, C., Hu, Y., Gao, J., Wu, Z., Lin, J., Wen, H., Wang, Z.: Winding based DC-bus capacitor discharge technique selection principles based on parametric analysis for EV-PMSM drives in post-crash conditions. IEEE Trans. Power Electron. 36(3), 3551–3562 (2021)

    Article  Google Scholar 

  2. Zhao, Y., Zhang, Z., Qiao, W., Wu, L.: An extended flux model-based rotor position estimator for sensorless control of salient-pole permanent-magnet synchronous machines. IEEE Trans. Power Electron. 30(8), 4412–4422 (2015)

    Article  Google Scholar 

  3. Song, X.D., Fang, J.C., Han, B.C., Zheng, S.Q.: Adaptive compensation method for high-speed surface PMSM sensorless drives of EMF-based position estimation error. IEEE Trans. Power Electron. 31(2), 1438–1449 (2016)

    Article  Google Scholar 

  4. Li, W.Z., Fang, J.C., Li, H.T., Tang, J.Q.: Position sensorless control without phase shifter for high-speed BLDC motors with low inductance and nonideal back EMF. IEEE Trans. Power Electron. 31(2), 1354–1366 (2016)

    Article  Google Scholar 

  5. Wang, G.L., Zhan, H.L., Zhang, G.Q., Gui, X.G., Xu, D.G.: Adaptive compensation method of position estimation harmonic error for EMF- based observer in sensorless IPMSM driver. IEEE Trans. Power Electron. 29(6), 3055–3064 (2014)

    Article  Google Scholar 

  6. Liu, J.B., Nondahl, T.A., Schmidt, P.B., Royak, S., Habaugh, M.: Rotor position estimation for synchronous machines based on equivalent EMF. IEEE Trans. Ind. Appl. 47(3), 1310–1318 (2011)

    Article  Google Scholar 

  7. Nguyen, K.Q., Nguyen, T.H., Ha, Q.P.: FPGA-based sensorless PMSM speed control using reduced-order extended Kalman filters. IEEE Trans. Ind. Electron. 61(12), 6574–6582 (2014)

    Article  Google Scholar 

  8. Gong, C., Hu, Y., Gao, J., Wang, Y., Yan, L.: An improved delay-suppressed sliding-mode observer for sensorless vector-controlled PMSM. IEEE Trans. Ind. Electron. 67(7), 5913–5923 (2020)

    Article  Google Scholar 

  9. Bernardes, T., Foletto Montagner, V., Grundling, H.A., Pinheiro, H.: Discrete-time sliding mode observer for sensorless vector control of permanent magnet synchronous machine. IEEE Trans. Ind. Electron. 61(4), 1679–1691 (2014)

    Article  Google Scholar 

  10. Gao, Q., Asher, G., Sumner, M.: Sensorless position and speed control of induction motors using high-frequency injection and without offline precommissioning. IEEE Trans. Ind. Electron. 54(5), 2474–2481 (2007)

    Article  Google Scholar 

  11. Szalai, T., Berger, G., Petzoldt, J.: Stabilizing sensorless control down to zero speed by using the high-frequency current amplitude. IEEE Trans. Power Electron. 29(7), 3646–3656 (2014)

    Article  Google Scholar 

  12. De Kock, H.W., Kamper, M.J., Kennel, R.M.: Anisotropy comparison of reluctance and PM synchronous machines for position sensorless control using HF carrier injection. IEEE Trans. Power Electron. 24(8), 1905–1913 (2009)

    Article  Google Scholar 

  13. Zhu, Z.Q., Gong, L.M.: Investigation of effectiveness of sensorless operation in carrier-signal-injection-based sensorless-control methods. IEEE Trans. Ind. Electron. 58(8), 3431–3439 (2011)

    Article  Google Scholar 

  14. Seilmeier, M., Piepenbreier, B.: Sensorless control of PMSM for the whole speed range using two-degree-of-freedom current control and HF test current injection for low-speed range. IEEE Trans. Power Electron. 30(8), 4394–4402 (2015)

    Article  Google Scholar 

  15. Al-nabi, E., Wu, B., Zargari, N.R., Sood, V.: Sensorless control of CSC-fed IPM machine for zero-and low-speed operations using pulsating HFI method. IEEE Trans. Ind. Electron. 60(5), 1711–1723 (2013)

    Article  Google Scholar 

  16. Chen, Z., Gao, J.B., Wang, F.X., Ma, Z.X., Zhang, Z.B., Kennel, R.: Sensorless control for SPMSM with concentrated windings using multi-signal injection method. IEEE Trans. Ind. Electron. 61(12), 6624–6634 (2014)

    Article  Google Scholar 

  17. Zhang, H., Liu, W., Chen, Z., Luo, G., Liu, J., Zhao, D.: Asymmetric space vector modulation for PMSM sensorless drives based on square- wave voltage-injection method. IEEE Trans. Ind. Appl. 54(2), 1425–1436 (2018)

    Article  Google Scholar 

  18. Ghazi Moghadam, M.A., Tahami, F.: Sensorless control of PMSMs with tolerance for delays and stator resistance uncertainties. IEEE Trans. Power Electron. 28(3), 1391–1399 (2013)

    Article  Google Scholar 

  19. Yoon, Y.D., Sul, S.K.: Sensorless control for induction machines based on square-wave voltage injection. IEEE Trans. Power Electron. 29(7), 3637–3645 (2014)

    Article  Google Scholar 

  20. Kim, D., Kwon, Y.-C., Sul, S.-K., Kim, J.-H., Yu, R.-S.: Suppression of injection voltage disturbance for high frequency square-wave injection sensorless drive with regulation of induced high frequency current ripple. 2014 International Power Electronics Conference (IPEC-Hiroshima 2014 - ECCE ASIA), Hiroshima, Japan, pp. 925–932 (2014). https://doi.org/10.1109/IPEC.2014.6869698

  21. Liu, J.M., Zhu, Z.Q.: Novel sensorless control strategy with injection of high-frequency pulsating carrier signal into stationary reference frame. IEEE Trans. Ind. Appl. 50(5), 2574–2583 (2014)

    Article  Google Scholar 

  22. Liu, J.M. and Zhu, Z.Q.: Sensorless control strategy by square-waveform high-frequency pulsating signal injection into stationary reference frame. IEEE J. Emerging Sel. Topics Power Electron. 2(2), 171–180 (2014)

  23. Kim, S., Ha, J.I., Sul, S.K.: PWM switching frequency signal injection sensorless method in IPMSM. IEEE Trans. Ind. Appl. 48(5), 1576–1587 (2012)

    Article  Google Scholar 

  24. Kim, S.-I., Im, J.-H., Song, E.-Y., Kim, R.-Y.: A new rotor position estimation method of IPMSM using all-pass filter on high-frequency rotating voltage signal injection. IEEE Trans. Ind. Electron. 63(10), 6499–6509 (2016)

    Article  Google Scholar 

  25. Wang, G.L., Zhang, G.Q., Li, C.R., Zhang, X.G.: Sensorless control scheme of IPMSMs using HF orthogonal square-wave voltage injection into stationary reference frame. IEEE Trans. Power Electron. 32(5), 3767–3776 (2018)

    Google Scholar 

  26. Tang, Q., Shen, A., Luo, X., Xu, J.: PMSM sensorless control by injecting HF pulsating carrier signal into ABC frame. IEEE Trans. Power Electron. 32(5), 3767–3776 (2017)

    Article  Google Scholar 

  27. Luo, X., Tang, Q., Shen, A., Zhang, Q.: PMSM sensorless control by injecting HF pulsating carrier signal into estimated fixed-frequency rotating reference frame. IEEE Trans. Ind. Electron. 63(4), 2294–2303 (2016)

    Article  Google Scholar 

  28. Reigosa, D., Garcia, P., Raca, D., Briz, F., Lorenz, R.D.: Measurement and adaptive decoupling of cross-saturation effects and secondary saliencies in sensorless-controlled IPM synchronous machines. IEEE Trans. Ind. Appl. 44(6), 1758–1767 (2008)

    Article  Google Scholar 

  29. Zhang, G.Q., Wang, G.L., Wang, H.Y., Xiao, D.X.: Pseudorandom-frequency sinusoidal injection based sensorless IPMSM drives with tolerance for system delays. IEEE Trans. Power Electron. 34(4), 3623–3632 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinglin Liu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Liu, J. & Gong, C. High-frequency response current direct demodulation method for sensorless control of interior permanent magnet synchronous motor drives. J. Power Electron. 22, 784–795 (2022). https://doi.org/10.1007/s43236-022-00401-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-022-00401-5

Keywords

Navigation