Skip to main content
Log in

Permanent magnet temperature estimation of high power density permanent magnet synchronous machines by considering magnetic saturation

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

This paper develops a method for permanent magnet (PM) temperature estimation in high power density permanent magnet synchronous machines (PMSMs) by considering magnetic saturation. Most of the previous methods in the literature are based on unsaturation. In this paper, the temperature estimation method of PMs is improved by adding a saturation coefficient. Once a machine is assembled, the inner and outer PM surfaces cannot be seen. Thus, it is impossible to realize visualization measurement of the permanent magnet temperature distribution. In this case, temperature sensors attached to the PM cam be used. However, the cost and robustness need to be considered. Therefore, in this paper, by solving a magnetic–thermal coupling finite element model, the temperature field distribution of a high power density PMSM is obtained. Then, an experimental platform is built to verify the model. Finally, the model is used to verify the reliability of the modified estimation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Betin, F., et al.: Trends in electrical machines control: Samples for classical, sensorless, and fault-tolerant techniques. IEEE Ind. Electron. Mag. 8(2), 43–55 (2014)

    Article  Google Scholar 

  2. Lu, X., Iyer, K.L.V., Mukherjee, K., Ramkumar, K., Kar, N.C.: Investigation of permanent-magnet motor drives incorporating damper bars for electrified vehicles. IEEE Trans. Ind. Electron. 62(5), 3234–3244 (2015)

    Article  Google Scholar 

  3. Betin, F., Capolino, G., Casadei, D., Kawkabani, B., Bojoi, R., Harnefors, L., Levi, E., Parsa, L., Fahimi, B.: Trends in electrical machines control: samples for classical, sensorless, and fault-tolerant techniques. IEEE Ind. Electron. 8(2), 43–55 (2014)

    Article  Google Scholar 

  4. Jahns, T.: Getting rare-earth magnets out of EV traction machines: a review of the many approaches being pursued to minimize or eliminate rare-earth magnets from future EV drivetrains. IEEE Electron. Mag. 5(1), 6–18 (2017)

    Article  Google Scholar 

  5. Sebastian, T.: Temperature effects on torque production and efficiency of PM motors using NdFeB magnets. IEEE Trans. Ind. Appl. 31(12), 353–357 (1995)

    Article  Google Scholar 

  6. Feng, G., Lai, C., Kar, N.: Expectation maximization particle filter and Kalman filter based permanent magnet temperature estimation for PMSM condition monitoring using high-frequency signal injection. IEEE Trans. Ind. Inf. 13(2), 1261–1270 (2017)

    Article  Google Scholar 

  7. Kral, C., Haumer, A., Lee, S.B.: A practical thermal model for the estimation of permanent magnet and stator winding temperatures. IEEE Trans. Power. Electron. 29(1), 455–464 (2014)

    Article  Google Scholar 

  8. Grobler, A.J., Holm, S.R., van Schoor, G.: Thermal modelling of a high-speed permanent magnet synchronous machine. Proc. IEEE Int. Conf. Electron. Mach. Drives Conf. (IEMD) (2013). https://doi.org/10.1109/IEMDC.2013.6556270

    Article  Google Scholar 

  9. Fernandez, D., Martínez, M., Diaz Reigosa, D., Guerrero, J.M., Alvarez, C.M.S., Briz, F.: Influence of magnetoresistance and temperature on permanent magnet condition estimation methods using high-frequency signal injection. IEEE Trans. Ind. Appl. 54(5), 4218–4226 (2018)

    Article  Google Scholar 

  10. Jung, H.S., Park, D., Kim, H., Sul, S., Berry, D.J.: Non-invasive magnet temperature estimation in IPMSM by using high frequency inductance with pulsating high frequency voltage signal injection. IEEE Trans. Ind. Appl. 55(3), 3076–3086 (2019)

    Article  Google Scholar 

  11. Jung, H.-S., Kim, H., Sul, S.-K.: Temperature estimation of IPMSM by using fundamental reactive energy considering variation of inductances. IEEE Trans. Power. Electron. 36(5), 5771–5783 (2021)

    Article  Google Scholar 

  12. Reigosa, D., Fernandez, D., Tanimoto, T.: Comparative analysis of BEMF and pulsating high-frequency current injection methods for PM temperature estimation in PMSMs. IEEE Trans. Power. Electron. 32(5), 3691–3699 (2017)

    Article  Google Scholar 

  13. Specht, A., Wallscheid, O., Bocker, J.: Determination of rotor temperature for an interior permanent magnet synchronous machine using a precise flux observer. In: Proceedings of IEEE International Power Electronics Conference (IPEC), pp. 501–1507 (2014)

  14. Feng, G., Lai, C., Tjong, J., Kar, N.C.: Noninvasive Kalman filter based permanent magnet temperature estimation for permanent magnet synchronous machines. IEEE Trans. Power Electron. 33(12), 10673–10682 (2018)

    Article  Google Scholar 

  15. Xiao, S., Griffo, A.: PWM-Based Flux linkage and rotor temperature estimations for permanent magnet synchronous machines. IEEE Trans. Power Electron. 35(6), 6061–6069 (2020)

    Article  Google Scholar 

  16. Lee, J.-Y., Lee, S.-H., Lee, G.-H., Hong, J.-P., Hur, J.: Determination of parameters considering magnetic nonlinearity in an interior permanent magnet synchronous motor. IEEE Trans. Mag. 42(4), 1303–1306 (2006)

    Article  Google Scholar 

  17. Liu, K., Zhu, Z.Q., Zhang, Q., Zhang, J.: Influence of nonideal voltage measurement on parameter estimation in permanent-magnet synchronous machines. IEEE Trans. Ind. Electron. 59(6), 2438–2447 (2012)

    Article  Google Scholar 

  18. Jiang, Y., Wang, D., Chen, J.: Electromagnetic-thermal-fluidic analysis of permanent magnet synchronous machine by bidirectional method. IEEE Trans. Mag. 54(3), 8102705 (2018)

    Google Scholar 

  19. Zhu, G., Liu, X., Li, L.: Coupled electromagnetic-thermal-fluidic analysis of permanent magnet synchronous machines with a modified model. CES Trans. Electri. Mach. Syst. 3(2), 204–209 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengxu Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Li, C., Zhang, W. et al. Permanent magnet temperature estimation of high power density permanent magnet synchronous machines by considering magnetic saturation. J. Power Electron. 21, 1804–1811 (2021). https://doi.org/10.1007/s43236-021-00314-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-021-00314-9

Keywords

Navigation