Skip to main content

Advertisement

Log in

Hardware implementation for hybrid active NPC converters using FPGA-based dual pulse width modulation

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

Recent developments in power electronics technologies have resulted in a need for fast responses and dynamic control. However, existing control schemes are still limited to the available digital signal processors (DSPs) and their associated high prices. The field-programmable gate array (FPGA) offers fast performance and high control flexibility by providing a reconfigurable computing speed. However, it has some implementation limitations in standalone systems. In this regard, this paper presents a hardware setup for a three-level hybrid active neutral point inverter (HANPC) using a FPGA and a DSP. A unique method using digital and analog modulation is designed in this study using Vivado software. The proposed method depends on receiving analog reference signals from the DSP and then performing all the required processes using the FPGA. Direct pulse width modulation is generated to control the HANPC without changing the hardware configuration of the main topology. The implemented hardware is based on a 15 kW HANPC topology that is mainly controlled by a Digilent Zybo-Z7-20 FPGA. The effectiveness of the proposed system was verified by experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Juárez-Abad, J.A., Linares-Flores, J., Guzmán-Ramírez, E., Sira-Ramírez, H.: Generalized proportional integral tracking controller for a single-phase multilevel cascade inverter: an FPGA implementation. IEEE Trans. Ind. Elec. Inform. 10(1), 256–266 (2013)

    Article  Google Scholar 

  2. Park, K., Lee, K.-B.: Hardware simulator development for a 3-parallel grid-connected PMSG wind power system. J. Power Electron. 10(5), 555–562 (2010)

    Article  Google Scholar 

  3. Halabi, L.M., Mekhilef, S., Olatomiwa, L., Hazelton, J.: Performance analysis of hybrid PV/diesel/battery system using HOMER: a case study in Sabah, Malaysia. Energy Convers Manag 144, 322–339 (2017)

    Article  Google Scholar 

  4. Monmasson, E., Cirstea, M.N.: FPGA design methodology for industrial control systems—a review. IEEE Trans. Ind. Electron. 54(4), 1824–1842 (2007)

    Article  Google Scholar 

  5. Monmasson, E., Idkhajine, L., Cirstea, M.N., Bahri, I., Tisan, A., Naouar, M.W.: FPGAs in industrial control applications. IEEE Trans. Ind. Inform. 7(2), 224–243 (2011)

    Article  Google Scholar 

  6. Ala, G., Caruso, M., Miceli, R., Pellitteri, F., Schettino, G., Trapanese, M., Viola, F.: Experimental investigation on the performances of a multilevel inverter using a field programmable gate array-based control system. Energies 12(6), 1016 (2019)

    Article  Google Scholar 

  7. Fan, B., Li, Y., Wang, K., Zheng, Z., Xu, L.: Hierarchical system design and control of an MMC-based power-electronic transformer. IEEE Trans. Ind. Inform. 13(1), 238–247 (2016)

    Article  Google Scholar 

  8. Nair, D.M., Biswas, J., Vivek, G., Barai, M.: Optimum hybrid SVPWM technique for three-level inverter on the basis of minimum RMS flux ripple. J. Power Electron. 19(2), 413–430 (2019)

    Google Scholar 

  9. Tang, G., Kong, W., Zhang, T.: The investigation of multiphase motor fault control strategies for electric vehicle application. J. Electr. Eng. Technol. 15(1), 163–177 (2020)

    Article  Google Scholar 

  10. Rodríguez-Andina, J.J., Valdes-Pena, M.D., Moure, M.J.: Advanced features and industrial applications of FPGAs—a review. IEEE Trans. Ind. Inform. 11(4), 853–864 (2015)

    Article  Google Scholar 

  11. Lee, K.-B., Lee, J.-S.: Reliability improvement technology for power converters. Springer, Singapore (2017)

    Book  Google Scholar 

  12. Nasri Sulaiman, Z.A.O., Marhaban, M.H., Hamidon, M.N.: Design and implementation of FPGA-based systems—a review. Aust. J. Basic Appl. Sci. 3(4), 3575–3596 (2009)

    Google Scholar 

  13. Coppola, M., Di Napoli, F., Guerriero, P., Iannuzzi, D., Daliento, S., Del Pizzo, A.: An FPGA-based advanced control strategy of a gridtied PV CHB inverter. IEEE Trans. Ind. Electron. 31(1), 806–816 (2016)

    Google Scholar 

  14. Moranchel, M., Huerta, F., Sanz, I., Bueno, E., Rodríguez, F.J.: A comparison of modulation techniques for modular multilevel converters. Energies 9(12), 1091 (2016)

    Article  Google Scholar 

  15. Islam, M.R., Guo, Y., Zhu, J.: FPGA-based control of modular multilevel converters: modeling and experimental evaluation. In: International conference on electrical and electronic engineering (ICEEE), pp. 89–92 (2015)

  16. Zhou, Z., Wang, Q., Lin, R.: Real-time simulation realization of modular multilevel converter based on FPGA. In: IEEE international power electronics and application conference and exposition (PEAC), pp. 1–6 (2018)

  17. Prabaharan, N., Arun, V., Sanjeevikumar, P., Mihet-Popa, L., Blaabjerg, F.: Reconfiguration of a multilevel inverter with trapezoidal pulse width modulation. Energies 11(8), 2148 (2018)

    Article  Google Scholar 

  18. Lee, K.-J.: Analytical modeling of neutral point current in T-type three-level PWM converter. Energies 13(6), 1324 (2020)

    Article  Google Scholar 

  19. Palanisamy, R., Shanmugasundaram, V., Vidyasagar, S., Kalyanasundaram, V., Vijayakumar, K.: A SVPWM control strategy for capacitor voltage balancing of flying capacitor based 4-level NPC inverter. J. Electr. Eng. Technol. 15(6), 2639–2649 (2020)

    Article  Google Scholar 

  20. Lyu, J., Ma, B., Yan, H., Ji, Z., Ding, J.: A modified finite control set model predictive control for 3L−NPC grid−connected inverters using virtual voltage vectors. J. Electr. Eng. Technol. 15(1), 121–133 (2020)

    Article  Google Scholar 

  21. Gaber, K., El Mashade, M.B., Aziz, G.A.A.A.: Hardware implementation of flexible attitude determination and control system for two-axis-stabilized CubeSat. J. Electr. Eng. Technol. 15(2), 869–882 (2020)

    Article  Google Scholar 

  22. Rameshkumar, K., Indragandhi, V.: Real time implementation and analysis of enhanced artificial bee colony algorithm optimized PI control algorithm for single phase shunt active power filter. J. Electr. Eng. Technol. 15(4), 1541–1554 (2020)

    Article  Google Scholar 

  23. Suliman, M.Y., Ghazal, M.: Design and implementation of overcurrent protection relay. J. Electr. Eng. Technol. 15(5), 1595–1605 (2020)

    Article  Google Scholar 

  24. Ul-Haq, A., Jalal, M., Aamir, M., Cecati, C., Muslim, F.B., Raja, A.A., Iqbal, J.: Simulations and experimental validation of one cycle controlled nine-level inverter using FPGA. Comput. Electr. Eng. 88, 106885 (2020)

    Article  Google Scholar 

  25. Beig, A.R., Dekka, A.: Experimental verification of multilevel inverter-based standalone power supply for low-voltage and low-power applications. IET Power Electron. 5(6), 635–643 (2012)

    Article  Google Scholar 

  26. Cheng, Q., Ma, X., Cheng, Y.: Coordinated control of the DFIG wind power generating system based on series grid side converter and passivity-based controller under unbalanced grid voltage conditions. J. Electr. Eng. Technol. 15(5), 2133–2143 (2020)

    Article  Google Scholar 

  27. Lutz, J., Schlangenotto, H., Scheuermann, U., DeDoncker, R.: Key components for efficient electrical energy conversion systems; in semiconductor power devices. Springer (2018)

    Book  Google Scholar 

  28. Guan, Q., Li, C., Zhang, Y., Shuai, W., Xu, D.: An extreme high efficient three-level active neutral-point-clamped converter comprising SiC and Si hybrid power stage. IEEE Trans. Power Electron. 33(10), 8341–8352 (2018)

    Article  Google Scholar 

  29. Song, M.-G., Kim, S.-K., Lee, K.-B.: Elimination of abnormal output voltage in a hybrid active NPC inverter. IEEE Trans. Power Electron. 36(5), 5348–5361 (2020)

    Article  Google Scholar 

  30. Ku, N.J., Jung, H.J., Kim, R.Y., Hyun, D.S.: A novel switching loss minimized PWM method for a high switching frequency three-level inverter with a SiC clamp diode. In: Proceedings in IEEE energy conversion congress and exposition, pp. 3702–3707 (2011)

  31. Li, J., Huang, A.Q., Liang, Z., Bhattacharya, S.: Analysis and design of active NPC (ANPC) inverters for fault-tolerant operation of high-power electrical drives. IEEE Trans. Power Electron. 27(2), 519–533 (2012)

    Article  Google Scholar 

  32. Kwon, B.H., Kim, S.-H., Kim, S.-M., Lee, K.-B.: Fault diagnosis of open-switch failure in a grid-connected three-level Si/SiC hybrid ANPC inverter. Electronics 9, 399 (2020)

    Article  Google Scholar 

  33. Choi, U.-M., Blaabjerg, F., Lee, K.-B.: Reliability improvement of a T-type three-level inverter with fault-tolerant control strategy. IEEE Trans. Power Electron. 30(5), 2660–2673 (2015)

    Article  Google Scholar 

  34. Kim, S.-H.: Electric motor control: DC, AC, and BLDC motors. Elsevier (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry and Energy (MOTIE) of the Republic of Korea (No. 20194030202370, No. 20206910100160).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyo-Beum Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halabi, L.M., Alsofyani, I.M. & Lee, KB. Hardware implementation for hybrid active NPC converters using FPGA-based dual pulse width modulation. J. Power Electron. 21, 1669–1679 (2021). https://doi.org/10.1007/s43236-021-00305-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-021-00305-w

Keywords

Navigation