Skip to main content
Log in

Enhanced magnetoelectric coupling in stretch-induced shear mode magnetoelectric composites

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Magnetoelectric (ME) laminates consisting of Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT)-based single crystals have recently attracted significant interest owing to their excellent piezoelectric properties. Particularly, ME laminates with d15-mode single crystals exhibit the strongest ME coupling, but the fabrication of ME laminates with 15 shear modes is challenging. Herein, we propose the generation of a stretch–shear mode (d15-mode) by clamping the opposite ends of the top and bottom magnetostrictive layers in symmetric ME laminates. Two different shear-stress-induced ME laminates were fabricated using Metglas/Galfenol as magnetostrictive layer, and 15-PMN-PZT as a piezoelectric layer. The ME laminates were studied under two different conditions, unclamped and clamped. Under unclamped condition, Galfenol/15-PMN-PZT/Galfenol (Metglas/15-PMN-PZT/Metglas) laminate showed maximum αME value of 1.71 V/cm∙Oe (0.62 V/cm∙Oe), while under clamped condition, Galfenol/d15-PMN-PZT/Galfenol (Metglas/15-PMN-PZT/Metglas) laminate exhibited an enhanced αME value of 2.40 V/cm∙Oe (0.87 V/cm∙Oe), indicating successful generation of the stretch–shear mode. Under clamped condition, αME was enhanced by 140% compared with the that of the unclamped case, suggesting a 40% (0.25 V/cm∙Oe) contribution from the pure shear ME voltage coefficient along with the longitudinal extension contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J. Ryu, J.E. Kang, Y. Zhou, S.Y. Choi, W.H. Yoon, D.S. Park, J.J. Choi, B.D. Hahn, C.W. Ahn, J.W. Kim, Y. Do Kim, S. Priya, S.Y. Lee, S. Jeong, D.Y. Jeong, Ubiquitous magneto-mechano-electric generator. Energy Environ. Sci. 8(8), 2402 (2015)

    Article  CAS  Google Scholar 

  2. V. Annapureddy, H. Palneedi, W.H. Yoon, D.S. Park, J.J. Choi, B.D. Hahn, C.W. Ahn, J.W. Kim, D.Y. Jeong, J. Ryu, A pT/√Hz sensitivity ac magnetic field sensor based on magnetoelectric composites using low-loss piezoelectric single crystals. Sensors Actuators A Phys. 260, 206 (2017)

    Article  CAS  Google Scholar 

  3. Z. Chu, M. Pourhosseiniasl, S. Dong, Review of multi-layered magnetoelectric composite materials and devices applications. J. Phys. D. Appl. Phys. 51(24), 263002 (2018)

    Article  Google Scholar 

  4. R.L. Gao, Q. Zhang, Z. Xu, Z. Wang, G. Chen, X. Deng, C. Fu, W. Cai, A comparative study on the structural, dielectric and multiferroic properties of Co0.6Cu0.3Zn0.1Fe2O4/Ba0.9Sr0.1Zr0.1Ti0.9O3 composite ceramics. Composite B. 166, 204 (2019)

    Article  CAS  Google Scholar 

  5. R.L. Gao, Z.H. Wang, G. Chen, X.L. Deng, W. Cai, C.L. Fu, Influence of core size on the multiferroic properties of CoFe2O4@BaTiO3 core shell structured composites. Ceram. Int. 44, S84 (2018)

    Article  CAS  Google Scholar 

  6. R.C. Xu, Z.H. Wang, R.L. Gao, S.L. Zhang, Q.W. Zhang, Z.D. Li, C.Y. Li, G. Chen, X.L. Deng, W. Cai, C.L. Fu, Effect of molar ratio on the microstructure, dielectric and multiferroic properties of Ni0.5Zn0.5Fe2O4-Pb0.8Zr0.2TiO3 nanocomposite. J. Mater. Sci. Mater Electron. 29, 16226 (2018)

    Article  CAS  Google Scholar 

  7. R.L. Gao, X. Qin, Q. Zhang, Z. Xu, Z. Wang, C. Fu, G. Chen, X. Deng, W. Cai, Enhancement of magnetoelectric properties of (1–x)Mn0.5Zn0.5Fe2O4-xBa0.85Sr0.15Ti0.9Hf0.1O3 composite ceramics. J. Alloy. Compd. 795, 501 (2019)

    Article  CAS  Google Scholar 

  8. J. Ma, J. Hu, Z. Li, C.W. Nan, Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv. Mater. 23(9), 1062 (2011)

    Article  CAS  Google Scholar 

  9. C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103(3), 31101 (2008)

    Article  Google Scholar 

  10. X. Liang, C. Dong, H. Chen, J. Wang, Y. Wei, M. Zaeimbashi, Y. He, A. Matyushov, C. Sun and N. Sun, A review of thin-film magnetoelastic materials for magnetoelectric applications. Sensors (Switzerland) 20(5) (2020). https://doi.org/10.3390/s20051532

  11. H.-Y. Kim, H.-K. Park, Y.-W. Ju, Fabrication of the novel Fe2+αO3+α–CoFe2O4 composite fibers and their magnetic properties. J. Korean Ceram. Soc. 57(4), 423 (2020)

    Article  CAS  Google Scholar 

  12. J.M. Cha, J.W. Lee, B.H. Bae, Y.J. Jeong, C.-B. Yoon, Synthesis and characterization of MnO2 added (Na0.475K0.475Li0.05) (Nb0.9Ta0.05Sb0.05)O3 lead-free piezoelectric ceramics. J. Korean Ceram. Soc. 57(4), 440 (2020)

    Article  CAS  Google Scholar 

  13. M. Peddigari, H. Palneedi, G.-T. Hwang, J. Ryu, Linear and nonlinear dielectric ceramics for high-power energy storage capacitor applications. J. Korean Ceram. Soc. 56(1), 1 (2019)

    Article  CAS  Google Scholar 

  14. A. Kumar, J.Y. Yoon, A. Thakre, M. Peddigari, D.-Y. Jeong, Y.-M. Kong, J. Ryu, Dielectric, ferroelectric, energy storage, and pyroelectric properties of Mn-doped (Pb0.93La0.07)(Zr0.82Ti0.18)O3 anti-ferroelectric ceramics. J. Korean Ceram. Soc. 56(4), 412 (2019)

    Article  CAS  Google Scholar 

  15. J.M. Jang, G.-T. Hwang, Y.H. Min, J.-W. Kim, C.-W. Ahn, J.-J. Choi, B.-D. Hahn, J.-H. Choi, D.-S. Park, Y.S. Jung, W.-H. Yoon, Fatigue study and durability improvement of piezoelectric single crystal macro-fiber composite energy harvester. J. Korean Ceram. Soc. 57(6), 645 (2020)

    Article  CAS  Google Scholar 

  16. S. Zhang, F. Li, F. Yu, X. Jiang, H.-Y. Lee, J. Luo, T.R. Shrout, Recent developments in piezoelectric crystals. J. Korean Ceram. Soc. 55(5), 419 (2018)

    Article  CAS  Google Scholar 

  17. Y. Wang, P. Finkel, J. Li, D. Viehland, Piezoelectric single crystal and magnetostrictive metglas composites: linear and nonlinear magnetoelectric coupling. Appl. Phys. Lett. 104(14), 142909 (2014)

    Article  Google Scholar 

  18. D.R. Patil, Y. Chai, R.C. Kambale, B.G. Jeon, K. Yoo, J. Ryu, W.H. Yoon, D.S. Park, D.Y. Jeong, S.G. Lee, J. Lee, J.H. Nam, J.H. Cho, B.I. Kim, K.H. Kim, Enhancement of resonant and non-resonant magnetoelectric coupling in multiferroic laminates with anisotropic piezoelectric properties. Appl. Phys. Lett. 102(6), 062909 (2013)

    Article  Google Scholar 

  19. D. RajaramPatil, R.C. Kambale, Y. Chai, W.H. Yoon, D.Y. Jeong, D.S. Park, J.W. Kim, J.J. Choi, C.W. Ahn, B.D. Hahn, S. Zhang, K. Hoon Kim, J. Ryu, Multiple broadband magnetoelectric response in thickness-controlled Ni/[011] Pb(Mg1/3Nb2/3)O3-Pb(Zr, Ti)O3 single crystal/Ni laminates. Appl. Phys. Lett. 103(5), 052907 (2013)

    Article  Google Scholar 

  20. D.R. Patil, Y. Chai, B.G. Jeon, R.C. Kambale, J. Ryu, S.G. Lee, J. Lee, K.H. Kim, Theoretical prediction of resonant and off-resonant magnetoelectric coupling in layered composites with anisotropic piezoelectric properties. Compos. Struct. 159, 498 (2017)

    Article  Google Scholar 

  21. S. Park, M. Peddigari, G.T. Hwang, W.H. Yoon, A. Kumar, J. Ryu, Face-shear 36-mode magnetoelectric composites with piezoelectric single crystal and metglas laminate. Appl. Phys. Lett. 115(10), 102901 (2019)

    Article  Google Scholar 

  22. Y. Wang, S.W. Or, H.L.W. Chan, X. Zhao, H. Luo, Magnetoelectric effect from mechanically mediated torsional magnetic force effect in NdFeB magnets and shear piezoelectric effect in 0.7Pb (Mg1/3Nb2/3)O3–0.3PbTiO3 single crystal. Appl. Phys. Lett. 92(12), 1 (2008)

    Google Scholar 

  23. Y. Wang, D. Hasanyan, J. Li, D. Viehland, H. Luo, Shear-mode magnetostrictive/piezoelectric composite with an enhanced magnetoelectric coefficient. Appl. Phys. Lett. 100(20), 202903 (2012)

    Article  Google Scholar 

  24. I.R. Yoo, C.W. Ahn, K.H. Cho, 15-Mode piezoelectric composite and its application in a magnetoelectric laminate structure. J. Alloys Compd. 767, 61 (2018)

    Article  CAS  Google Scholar 

  25. C. Xin, J. Ma, J. Ma, C. Nan, Stretch-shear mode laminated metglas/Pb(Zr, Ti)O3/metglass composite with an enhanced magnetoelectric effect. Sci. Bull. 62(6), 388 (2017)

    Article  CAS  Google Scholar 

  26. H. Song, M. Peddigari, A. Kumar, S. Lee, D. Kim, N. Park, J. Li, D.R. Patil, J. Ryu, Enhancement of magnetoelectric (ME) coupling by using textured magnetostrictive alloy in 2–2 type ME laminate. J. Alloys Compd. 834, 155124 (2020)

    Article  CAS  Google Scholar 

  27. D. Patil, J.H. Kim, Y.S. Chai, J.H. Nam, J.H. Cho, B.I. Kim, K.H. Kim, Large longitudinal magnetoelectric coupling in NiFe2O4-BaTiO3 laminates. Appl. Phys. Express 4, 073001 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This study was primarily supported by the Global Frontier R&D Program at the Center for Hybrid Interface Materials (HIM) funded by the Ministry of Science, ICT, and Future Planning Korea (Grant No. NRF-2016M3A6B1925390), the National Research Foundation of Korea (NRF-2019R1A2B5B01070100), and the National Research Council of Science and Technology (NST) grant by the Korean Government (MSIP, No. CAP-17-04-KRISS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jungho Ryu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, D.R., Park, S.H., Patil, S. et al. Enhanced magnetoelectric coupling in stretch-induced shear mode magnetoelectric composites. J. Korean Ceram. Soc. 58, 700–705 (2021). https://doi.org/10.1007/s43207-021-00144-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-021-00144-2

Keywords

Navigation