Skip to main content

Advertisement

Log in

Bone whitlockite: synthesis, applications, and future prospects

  • Review
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Bone whitlockite (WH) exists in the collagen matrix along with hydroxyapatite (HA) and plays a vital role during earlier stages of bone development. It is present in short-range order and is difficult to identify in the bone, as compared to HA mineral, that covers 80% of the bone inorganic phase. It has the same structural analogy with β-TCP, but detailed structural and crystallographic analyses of bone have shown that β-tricalcium phosphate (β-TCP) is merely a synthetic analog of bone whitlockite, having the same crystalline structure but different chemically. WH contains magnesium at Ca(IV), Ca(V) positions, and HPO42− on a threefold axis in a rhombohedral crystal lattice. Its biocompatibility, functionality, negative surface charge, mechanical strength, and stability in physiological solvents make it an ideal bone substitute as compared to hydroxyapatite (HA) and β-TCP. It has magnesium as a major component that has a strong affinity with integrin protein. Integrin protein plays a vital role in bone tissue integration. It is bioresorbable and biodegradable and the rate of degradation complements with regeneration. However, despite these excellent properties, this material has always been overshadowed by other calcium phosphates (CaPs), because it is difficult to synthesize. In this review article, we present a comprehensive study on the difference in the crystalline structure of bone whitlockite and β-TCP, its presence in the natural system, and conditions under which its nucleation occurs in native bone and at lab scale. Furthermore, the reaction conditions that favor homogenous precipitation of synthetic WH and the role of magnesium in the stabilization of different CaPs to obtain pure WH phase are also discussed. Finally, the applications of WH in biomedical and for heavy metal adsorption are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Zhou, C. Wu, J. Chang, Bioceramics to regulate stem cells and their microenvironment for tissue regeneration. Mater. Today. 24, 41–56 (2019). https://doi.org/10.1016/j.mattod.2018.07.016

    Article  CAS  Google Scholar 

  2. J. Jeong, J.H. Kim, J.H. Shim, N.S. Hwang, C.Y. Heo, Bioactive calcium phosphate materials and applications in bone regeneration. Biomaterial. Res. (2019). https://doi.org/10.1186/s40824-018-0149-3

    Article  Google Scholar 

  3. S.R. Paital, N.B. Dahotre, Calcium phosphate coatings for bio-implant applications: Materials, performance factors, and methodologies. Mater. Sci. Eng. R Reports. 66, 1–70 (2009). https://doi.org/10.1016/j.mser.2009.05.001

    Article  CAS  Google Scholar 

  4. M. Vallet-Regí, I. Izquierdo-Barba, M. Colilla, Structure and functionalization of mesoporous bioceramics for bone tissue regeneration and local drug delivery. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 370, 1400–1421 (2012). https://doi.org/10.1098/rsta.2011.0258

    Article  CAS  Google Scholar 

  5. W. Habraken, P. Habibovic, M. Epple, M. Bohner, Calcium phosphates in biomedical applications: materials for the future? Mater. Today 19, 69–87 (2016). https://doi.org/10.1016/j.mattod.2015.10.008

    Article  CAS  Google Scholar 

  6. L.C. Gerhardt, A.R. Boccaccini, Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials (Basel). 3, 3867–3910 (2010). https://doi.org/10.3390/ma3073867

    Article  CAS  Google Scholar 

  7. F. Barrère, C.A. van Blitterswijk, K. de Groot, Bone regeneration: Molecular and cellular interactions with calcium phosphate ceramics. Int. J. Nanomed. 1, 317–332 (2006)

    Google Scholar 

  8. S. Kuttappan, D. Mathew, M.B. Nair, Biomimetic composite scaffolds containing bioceramics and collagen/gelatin for bone tissue engineering—a mini review. Int. J. Biol. Macromol. 93, 1390–1401 (2016). https://doi.org/10.1016/j.ijbiomac.2016.06.043

    Article  CAS  Google Scholar 

  9. V.P. Mantripragada, B. Lecka-Czernik, N.A. Ebraheim, A.C. Jayasuriya, An overview of recent advances in designing orthopedic and craniofacial implants. J. Biomed. Mater. Res. Part A. 101, 3349–3364 (2013). https://doi.org/10.1002/jbm.a.34605

    Article  CAS  Google Scholar 

  10. P.N. Kumta, C. Sfeir, D.H. Lee, D. Olton, D. Choi, Nanostructured calcium phosphates for biomedical applications: Novel synthesis and characterization. Acta Biomater. 1, 65–83 (2005). https://doi.org/10.1016/j.actbio.2004.09.008

    Article  Google Scholar 

  11. S. Bose, S. Tarafder, Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater. 8, 1401–1421 (2012). https://doi.org/10.1016/j.actbio.2011.11.017

    Article  CAS  Google Scholar 

  12. V. Uskoković, D.P. Uskoković, Nanosized hydroxyapatite and other calcium phosphates: chemistry of formation and application as drug and gene delivery agents. J. Biomed. Mater. Res. Part B Appl. Biomater. 96B, 152–191 (2011). https://doi.org/10.1002/jbm.b.31746

    Article  CAS  Google Scholar 

  13. I. Ullah, A. Gloria, W. Zhang, M.W. Ullah, B. Wu, W. Li, M. Domingos, X. Zhang, Synthesis and characterization of sintered Sr/Fe-modified hydroxyapatite bioceramics for bone tissue engineering applications. ACS Biomater. Sci. Eng. 6, 375–388 (2020). https://doi.org/10.1021/acsbiomaterials.9b01666

    Article  CAS  Google Scholar 

  14. A. Haider, S. Haider, S. Han, I. Kang, Recent advances in the synthesis, functionalization and biomedical applications of hydroxyapatite. RSC Adv. (2017). https://doi.org/10.1039/c6ra26124h

    Article  Google Scholar 

  15. R. Yunus Basha, S.K. Sampath, M. Doble, Design of biocomposite materials for bone tissue regeneration. Mater. Sci. Eng. C 57, 452–463 (2015). https://doi.org/10.1016/j.msec.2015.07.016

    Article  CAS  Google Scholar 

  16. C. Lin, H. Zhu, Y. Zeng, Sr- and Si-containing bioceramic stimulate in vitro osteogenesis. Surf. Coat. Technol. 365, 129–133 (2019). https://doi.org/10.1016/j.surfcoat.2018.10.063

    Article  CAS  Google Scholar 

  17. J.H. Chung, Y.K. Kim, K.H. Kim, T.Y. Kwon, S.Z. Vaezmomeni, M. Samiei, M. Aghazadeh, S. Davaran, M. Mahkam, G. Asadi, A. Akbarzadeh, Synthesis, characterization, biocompatibility of hydroxyapatite-natural polymers nanocomposites for dentistry applications. Artif. Cells Nanomed. Biotechnol. 44, 277–284 (2016). https://doi.org/10.3109/21691401.2014.944644

    Article  CAS  Google Scholar 

  18. A.S. Kranthi Kiran, A. Kizhakeyil, R. Ramalingam, N.K. Verma, R. Lakshminarayanan, T.S.S. Kumar, M. Doble, S. Ramakrishna, Drug loaded electrospun polymer/ceramic composite nanofibrous coatings on titanium for implant related infections. Ceram. Int. 45, 18710–18720 (2019). https://doi.org/10.1016/j.ceramint.2019.06.097

    Article  CAS  Google Scholar 

  19. P. Habibovic, J.E. Barralet, Bioinorganics and biomaterials: bone repair. Acta Biomater. 7, 3013–3026 (2011). https://doi.org/10.1016/j.actbio.2011.03.027

    Article  CAS  Google Scholar 

  20. A. Hertz, I.J. Bruce, Inorganic materials for bone repair or replacement applications. Nanomedicine 2, 899–918 (2007). https://doi.org/10.2217/17435889.2.6.899

    Article  CAS  Google Scholar 

  21. A.M. Brokesh, A.K. Gaharwar, Inorganic biomaterials for regenerative medicine. ACS Appl. Mater. Interfaces 12, 5319–5344 (2020). https://doi.org/10.1021/acsami.9b17801

    Article  CAS  Google Scholar 

  22. M. Trabelsi, I. AlShahrani, H. Algarni, F. Ben-Ayed, E.S. Yousef, Mechanical and tribological properties of the tricalcium phosphate—magnesium oxide composites. Mater. Sci. Eng. C. 96, 716–729 (2019). https://doi.org/10.1016/j.msec.2018.11.070

    Article  CAS  Google Scholar 

  23. M. Razavi, M.H. Fathi, M. Meratian, Fabrication and characterization of magnesium—fluorapatite nanocomposite for biomedical applications. Mater. Charact. 61, 1363–1370 (2010). https://doi.org/10.1016/j.matchar.2010.09.008

    Article  CAS  Google Scholar 

  24. A. Jense, S. Rowles, Lattice constants and magnesium contents of some naturally occurring whitlockites. Nature 179, 912–913 (1957). https://doi.org/10.1038/179912b0

    Article  Google Scholar 

  25. A.T. Saleh, L.S. Ling, R. Hussain, Injectable magnesium-doped brushite cement for controlled drug release application. J. Mater. Sci. 51, 7427–7439 (2016). https://doi.org/10.1007/s10853-016-0017-2

    Article  CAS  Google Scholar 

  26. H.L. Jang, K. Jin, J. Lee, Y. Kim, S.H. Nahm, K.S. Hong, K.T. Nam, Revisiting whitlockite, the second most abundant biomineral in bone: Nanocrystal synthesis in physiologically relevant conditions and biocompatibility evaluation. ACS Nano 8, 634–641 (2014). https://doi.org/10.1021/nn405246h

    Article  CAS  Google Scholar 

  27. A. Altomare, R. Rizzi, M. Rossi, A. El Khouri, M. Elaatmani, V. Paterlini, I. Della Ventura, F. Capitelli, New Ca2.90(Me2+)0.10(PO4)2(β-tricalcium phosphates with Me2+= Mn, Ni, Cu: synthesis, crystal-chemistry, and luminescence properties. Curr. Comput.-Aided Drug Des. 9, 1–17 (2019). https://doi.org/10.3390/cryst9060288

    Article  CAS  Google Scholar 

  28. A.T. Jensen, S.L. Rowles, Magnesian whitlockite, a major constituent of dental calculus. Acta Odontol. Scand. 15, 121–139 (1957). https://doi.org/10.3109/00016355709041096

    Article  CAS  Google Scholar 

  29. K.D. Litasov, N.M. Podgornykh, Raman spectroscopy of various phosphate minerals and occurrence of tuite in the Elga IIE iron meteorite. J. Raman Spectrosc. 48, 1518–1527 (2017). https://doi.org/10.1002/jrs.5119

    Article  CAS  Google Scholar 

  30. J.M. Hughes, B.L. Jolliff, J. Rakovan, The crystal chemistry of whitlockite and merrillite and the dehydrogenation of whitlockite to merrillite. Am. Mineral. 93, 1300–1305 (2008). https://doi.org/10.2138/am.2008.2683

    Article  CAS  Google Scholar 

  31. C. Stähli, J. Thüring, L. Galea, S. Tadier, M. Bohner, N. Döbelin, Hydrogen-substituted β-tricalcium phosphate synthesized in organic media. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 72, 875–884 (2016). https://doi.org/10.1107/S2052520616015675

    Article  CAS  Google Scholar 

  32. P. Melnikov, D.M. de Albuquerque, T.A. Naves, L.C.S. de Oliveira, Synthesis and characterization of zinc-containing whitlockite Ca10Zn10H2(PO4)14 for orthopedic applications. Mater. Lett. 231, 198–200 (2018). https://doi.org/10.1016/j.matlet.2018.08.051

    Article  CAS  Google Scholar 

  33. R. Lagier, C.A. Baud, Magnesium whitlockite, a calcium phosphate crystal of special interest in pathology. Pathol. Res. Pract. 199, 329–335 (2003). https://doi.org/10.1078/0344-0338-00425

    Article  CAS  Google Scholar 

  34. C.T. Adcock, O. Tschauner, E.M. Hausrath, A. Udry, S.N. Luo, Y. Cai, M. Ren, A. Lanzirotti, M. Newville, M. Kunz, C. Lin, Shock-transformation of whitlockite to merrillite and the implications for meteoritic phosphate. Nat. Commun. 8, 1–8 (2017). https://doi.org/10.1038/ncomms14667

    Article  Google Scholar 

  35. M. Canillas, P. Pena, A.H. De Aza, M.A. Rodríguez, Calcium phosphates for biomedical applications. Bol. La Soc. Esp. Ceram. y Vidr. 56, 91–112 (2017). https://doi.org/10.1016/j.bsecv.2017.05.001

    Article  CAS  Google Scholar 

  36. R. Gopal, C. Calvo, J. Ito, W.K. Sabine, Crystal structure of synthetic Mg-whitlockite, Ca18Mg2H2(PO4)14. Can J Chem 52(7), 1155–1164 (2020). https://doi.org/10.1139/v74-181

    Article  Google Scholar 

  37. J.S. Bow, S.C. Liou, S.Y. Chen, Structural characterization of room-temperature synthesized nano-sized β-tricalcium phosphate. Biomaterials 25, 3155–3161 (2004). https://doi.org/10.1016/j.biomaterials.2003.10.046

    Article  CAS  Google Scholar 

  38. T.A. Grünewald, H. Rennhofer, B. Hesse, M. Burghammer, S.E. Stanzl-tschegg, M. Cotte, J.F. Löffler, A.M. Weinberg, H.C. Lichtenegger, Biomaterials magnesium from bioresorbable implants: distribution and impact on the nano- and mineral structure of bone. Biomaterials 76, 250–260 (2016). https://doi.org/10.1016/j.biomaterials.2015.10.054

    Article  CAS  Google Scholar 

  39. M. Diba, F. Tapia, A.R. Boccaccini, L.A. Strobel, Magnesium-containing bioactive glasses for biomedical applications. Int. J. Appl. Glas. Sci. 3, 221–253 (2012). https://doi.org/10.1111/j.2041-1294.2012.00095.x

    Article  CAS  Google Scholar 

  40. V. Campana, G. Milano, E. Pagano, M. Barba, C. Cicione, G. Salonna, W. Lattanzi, G. Logroscino, Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J. Mater. Sci. Mater. Med. 25, 2445–2461 (2014). https://doi.org/10.1007/s10856-014-5240-2

    Article  CAS  Google Scholar 

  41. S.V. Dorozhkin, Calcium orthophosphate-based biocomposites and hybrid biomaterials. J. Mater. Sci. 44, 2343–2387 (2009). https://doi.org/10.1007/s10853-008-3124-x

    Article  CAS  Google Scholar 

  42. Y.Z. Jin, G. Bin Zheng, H.L. Jang, K.M. Lee, J.H. Lee, Whitlockite promotes bone healing in rabbit ilium defect model. J. Med. Biol. Eng. 39, 944–951 (2019). https://doi.org/10.1007/s40846-019-00471-0

    Article  Google Scholar 

  43. S. Gomes, G. Renaudin, E. Jallot, J.M. Nedelec, Structural characterization and biological fluid interaction of sol-gel-derived Mg-substituted biphasic calcium phosphate ceramics. ACS Appl. Mater. Interfaces 1, 505–513 (2009). https://doi.org/10.1021/am800162a

    Article  CAS  Google Scholar 

  44. D.V. Deyneko, S.M. Aksenov, V.A. Morozov, S.Y. Stefanovich, O.V. Dimitrova, O.V. Barishnikova, B.I. Lazoryak, A new hydrogen-containing whitlockitetype phosphate Ca9(Fe0.63Mg0.37)H0.37(PO4)7: hydrothermal synthesis and structure. Zeitschrift Fur Krist. Cryst. Mater. 229, 823–830 (2014). https://doi.org/10.1515/zkri-2014-1774

    Article  CAS  Google Scholar 

  45. B.I. Lazoryak, T.V. Strunenkova, V.N. Golubev, E.A. Vovk, L.N. Ivanov, Triple phosphates of calcium, sodium and trivalent elements with whitlockite-like structure. Mater. Res. Bull. 31, 207–216 (1996). https://doi.org/10.1016/0025-5408(95)00181-6

    Article  CAS  Google Scholar 

  46. C.A. Scotchford, M. Vickers, S. Yousuf Ali, The isolation and characterization of magnesium whitlockite crystals from human articular cartilage. Osteoarthr. Cartil. 3, 79–94 (1995). https://doi.org/10.1016/S1063-4584(05)80041-X

    Article  CAS  Google Scholar 

  47. R.P. Shellis, B.R. Heywood, F.K. Wahab, Formation of brushite, monetite and whitlockite during equilibration of human enamel with acid solutions at 37 degrees C. Caries Res. 31, 71–77 (1997). https://doi.org/10.1159/000262377

    Article  CAS  Google Scholar 

  48. F.A. Shah, B.E.J. Lee, J. Tedesco, C. Larsson Wexell, C. Persson, P. Thomsen, K. Grandfield, A. Palmquist, Micrometer-sized magnesium whitlockite crystals in micropetrosis of bisphosphonate-exposed human alveolar bone. Nano Lett. 17, 6210–6216 (2017). https://doi.org/10.1021/acs.nanolett.7b02888

    Article  CAS  Google Scholar 

  49. M. López-Álvarez, S. Pérez-Davila, C. Rodríguez-Valencia, P. González, J. Serra, The improved biological response of shark tooth bioapatites in a comparative in vitro study with synthetic and bovine bone grafts. Biomed. Mater. (2016). https://doi.org/10.1088/1748-6041/11/3/035011

    Article  Google Scholar 

  50. D.H. Butler, R. Shahack-Gross, Formation of biphasic hydroxylapatite-beta magnesium tricalcium phosphate in heat treated salmonid vertebrae. Sci. Rep. 7, 1–11 (2017). https://doi.org/10.1038/s41598-017-03737-2

    Article  CAS  Google Scholar 

  51. J.H. Luna-Domínguez, H. Téllez-Jiménez, H. Hernández-Cocoletzi, M. García-Hernández, J.A. Melo-Banda, H. Nygren, Development and in vivo response of hydroxyapatite/whitlockite from chicken bones as bone substitute using a chitosan membrane for guided bone regeneration. Ceram. Int. 44, 22583–22591 (2018). https://doi.org/10.1016/j.ceramint.2018.09.032

    Article  CAS  Google Scholar 

  52. C.A. Scotchford, S.Y. Ali, Association of magnesium whitlockite crystals with lipid components of the extracellular matrix in human articular cartilage. Osteoarthr. Cartil. 5, 107–119 (1997). https://doi.org/10.1016/S1063-4584(97)80004-0

    Article  CAS  Google Scholar 

  53. T. Debroise, E. Colombo, G. Belletti, J. Vekeman, Y. Su, R. Papoular, N.S. Hwang, D. Bazin, M. Daudon, P. Quaino, F. Tielens, One step further in the elucidation of the crystallographic structure of whitlockite. Cryst. Growth Des. (2020). https://doi.org/10.1021/acs.cgd.9b01679

    Article  Google Scholar 

  54. A.R. Toibah, I. Sopyan, M. Hamdi, S. Ramesh, Development of magnesium-doped biphasic calcium phosphatethrough sol-gel method. In: 4th Kuala Lumpur International Conference on Biomedical Engineering (2008). IFMBE Proceedings, vol. 21, ed. by N.A. Abu Osman, F. Ibrahim, W.A.B. Wan Abas, H.S. Abdul Rahman, H.N. Ting (Springer, Berlin), pp. 314–317. https://doi.org/10.1007/978-3-540-69139-6_80

  55. S.M. Naga, A.M. Hassan, M. Awaad, A. Killinger, R. Gadow, A. Bernstein, M. Sayed, Forsterite/nano-biogenic hydroxyapatite composites for biomedical applications. J. Asian Ceram. Soc. 00, 1–14 (2020). https://doi.org/10.1080/21870764.2020.1743416

    Article  Google Scholar 

  56. J. Cabrejos-Azama, M.H. Alkhraisat, C. Rueda, J. Torres, L. Blanco, E. López-Cabarcos, Magnesium substitution in brushite cements for enhanced bone tissue regeneration. Mater. Sci. Eng. C. 43, 403–410 (2014). https://doi.org/10.1016/j.msec.2014.06.036

    Article  CAS  Google Scholar 

  57. E. O’Neill, G. Awale, L. Daneshmandi, O. Umerah, K.W.H. Lo, The roles of ions on bone regeneration. Drug Discov. Today. 23, 879–890 (2018). https://doi.org/10.1016/j.drudis.2018.01.049

    Article  CAS  Google Scholar 

  58. M. Nabiyouni, T. Brückner, H. Zhou, U. Gbureck, S.B. Bhaduri, Magnesium-based bioceramics in orthopedic applications. Acta Biomater. 66, 23–43 (2018). https://doi.org/10.1016/j.actbio.2017.11.033

    Article  CAS  Google Scholar 

  59. S. Yoshizawa, A. Brown, A. Barchowsky, C. Sfeir, Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation. Acta Biomater. 10, 2834–2842 (2014). https://doi.org/10.1016/j.actbio.2014.02.002

    Article  CAS  Google Scholar 

  60. M. Shahrezaee, M. Raz, S. Shishehbor, F. Moztarzadeh, F. Baghbani, A. Sadeghi, K. Bajelani, F. Tondnevis, Synthesis of magnesium doped amorphous calcium phosphate as a bioceramic for biomedical application: in vitro study. SILICON 10, 1171–1179 (2018). https://doi.org/10.1007/s12633-017-9589-y

    Article  CAS  Google Scholar 

  61. Y.T. Sul, P. Johansson, B.S. Chang, E.S. Byon, Y. Jeong, Bone tissue responses to Mg-incorporated oxidized implants and machine-turned implants in the rabbit femur. J. Appl. Biomater. Biomech. 3, 18–28 (2005). https://doi.org/10.1177/228080000500300103

    Article  CAS  Google Scholar 

  62. M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27, 1728–1734 (2006). https://doi.org/10.1016/j.biomaterials.2005.10.003

    Article  CAS  Google Scholar 

  63. M.M. Belluci, G. Giro, R.A.L. del Barrio, R.M.R. Pereira, E. Marcantonio, S.R.P. Orrico, Effects of magnesium intake deficiency on bone metabolism and bone tissue around osseointegrated implants. Clin. Oral Implants Res. 22, 716–721 (2011). https://doi.org/10.1111/j.1600-0501.2010.02046.x

    Article  Google Scholar 

  64. B. Gayathri, N. Muthukumarasamy, D. Velauthapillai, S.B. Santhosh, V. Asokan, Magnesium incorporated hydroxyapatite nanoparticles: preparation, characterization, antibacterial and larvicidal activity. Arab. J. Chem. 11, 645–654 (2018). https://doi.org/10.1016/j.arabjc.2016.05.010

    Article  CAS  Google Scholar 

  65. S. Kannan, A.F. Lemos, J.H.G. Rocha, J.M.F. Ferreira, Characterization and mechanical performance of the Mg-stabilized $β$-Ca3(PO4)2 prepared from Mg-substituted Ca-deficient apatite. J. Am. Ceram. Soc. 89, 2757–2761 (2006). https://doi.org/10.1111/j.1551-2916.2006.01158.x

    Article  CAS  Google Scholar 

  66. M.H. Marahat, M.A.A. Zahari, H. Mohamad, S.R. Kasim, Effect of magnesium ion (Mg2+) substitution and calcination to the properties of biphasic calcium phosphate (BCP). In: AIP Conference Proceedings, vol. 2068 (2019). https://doi.org/10.1063/1.5089373

  67. J. Liao, K. Hamada, M. Senna, Synthesis of Ca–Mg apatite via a mechanochemical hydrothermal process. J. Mater. Synth. Process. 8, 305–306 (2000). https://doi.org/10.1023/A:1011342427619

    Article  CAS  Google Scholar 

  68. W.L. Suchanek, K. Byrappa, P. Shuk, R.E. Riman, V.F. Janas, K.S. Tenhuisen, Mechanochemical-hydrothermal synthesis of calcium phosphate powders with coupled magnesium and carbonate substitution. J. Solid State Chem. 177, 793–799 (2004). https://doi.org/10.1016/j.jssc.2003.09.012

    Article  CAS  Google Scholar 

  69. S.N. Danilchenko, I.Y. Protsenko, L.F. Sukhodub, Some features of thermo-activated structural transformation of biogenic and synthetic Mg-containing apatite with ß-tricalciummagnesium phosphate formation. Cryst. Res. Technol. 44, 553–560 (2009). https://doi.org/10.1002/crat.200900017

    Article  CAS  Google Scholar 

  70. L. Wang, C. Peng, Y. Song, IFES sciences for life Ni@carbon nanocomposites/macroporous carbon for glucose sensor. J. Mater. Sci. 54, 1654–1664 (2019). https://doi.org/10.1007/s10853-018-2878-z

    Article  CAS  Google Scholar 

  71. S. Adzila, N.A. Mustaffa, N. Kanasan, Magnesium-doped calcium phosphate/sodium alginate biocomposite for bone implant application. J. Aust. Ceram. Soc. (2020). https://doi.org/10.1007/s41779-019-00417-4

    Article  Google Scholar 

  72. H. Zhou, S. Hou, M. Zhang, H. Chai, Y. Liu, S.B. Bhaduri, L. Yang, L. Deng, Synthesis of β-TCP and CPP containing biphasic calcium phosphates by a robust technique. Ceram. Int. 42, 11032–11038 (2016). https://doi.org/10.1016/j.ceramint.2016.03.246

    Article  CAS  Google Scholar 

  73. T. Sakae, X-ray diffraction and thermal studies of I Iii. Archs Oral Biol. 33, 707–713 (1988)

    Article  CAS  Google Scholar 

  74. J.D.B. Featherstone, I. Mayer, F.C.M. Driessens, R.M.H. Verbeeck, H.J.M. Heijligers, Synthetic apatites containing Na, Mg, and CO3 and their comparison with tooth enamel mineral. Calcif. Tissue Int. 35, 169–171 (1983). https://doi.org/10.1007/BF02405026

    Article  CAS  Google Scholar 

  75. M.H. Salimi, J.C. Heughebaert, G.H. Nancollas, Crystal growth of calcium phosphates in the presence of magnesium ions. Langmuir 1, 119–122 (1985). https://doi.org/10.1021/la00061a019

    Article  CAS  Google Scholar 

  76. M. Okazaki, J. Takahashi, H. Kimura, Unstable behavior of magnesium-containing hydroxyapatites. Caries Res. 20, 324–331 (1986)

    Article  CAS  Google Scholar 

  77. N. Kanzaki, K. Onuma, G. Treboux, S. Tsutsumi, A. Ito, Inhibitory effect of magnesium and zinc on crystallization kinetics of hydroxyapatite (0001) face. J. Phys. Chem. B. 104, 4189–4194 (2000). https://doi.org/10.1021/jp9939726

    Article  CAS  Google Scholar 

  78. M. Nouri-Felekori, M. Khakbiz, N. Nezafati, Synthesis and characterization of Mg, Zn and Sr-incorporated hydroxyapatite whiskers by hydrothermal method. Mater. Lett. 243, 120–124 (2019). https://doi.org/10.1016/j.matlet.2019.01.147

    Article  CAS  Google Scholar 

  79. S.R. Kim, J.H. Lee, Y.T. Kim, D.H. Riu, S.J. Jung, Y.J. Lee, S.C. Chung, Y.H. Kim, Synthesis of Si, Mg substituted hydroxyapatites and their sintering behaviors. Biomaterial 24, 1389–1398 (2003). https://doi.org/10.1016/S0142-9612(02)00523-9

    Article  Google Scholar 

  80. S. Diallo-Garcia, D. Laurencin, J.M. Krafft, S. Casale, M.E. Smith, H. Lauron-Pernot, G. Costentin, Influence of magnesium substitution on the basic properties of hydroxyapatites. J. Phys. Chem. C. 115, 24317–24327 (2011). https://doi.org/10.1021/jp209316k

    Article  CAS  Google Scholar 

  81. L. Bauer, M. Ivanković, H. Ivanković, Magneisum substituted hydroxyapatite scaffolds hydrothermally synthesized from Cuttlefish bone. In: International Conference MATRIB (2018), vol. 21–34. Croatian Society for Materials and Tribology

  82. I. Cacciotti, A. Bianco, M. Lombardi, L. Montanaro, Mg-substituted hydroxyapatite nanopowders: synthesis, thermal stability and sintering behaviour. J. Eur. Ceram. Soc. 29, 2969–2978 (2009). https://doi.org/10.1016/j.jeurceramsoc.2009.04.038

    Article  CAS  Google Scholar 

  83. I.V. Fadeev, L.I. Shvorneva, S.M. Barinov, V.P. Orlovskii, Synthesis and structure of magnesium-substituted hydroxyapatite. Inorg. Mater. 39, 947–950 (2003)

    Article  CAS  Google Scholar 

  84. S. Kannan, I.A.F. Lemos, J.H.G. Rocha, J.M.F. Ferreira, Synthesis and characterization of magnesium substituted biphasic mixtures of controlled hydroxyapatite/β-tricalcium phosphate ratios. J. Solid State Chem. 178, 3190–3196 (2005). https://doi.org/10.1016/j.jssc.2005.08.003

    Article  CAS  Google Scholar 

  85. L. Stipniece, K. Salma-Ancane, D. Jakovlevs, N. Borodajenko, L. Berzina-Cimdina, The study of magnesium substitution effect on physicochemical properties of hydroxyapatite. Mater. Sci. Appl. Chem. 28, 51 (2013). https://doi.org/10.7250/msac.2013.009

    Article  CAS  Google Scholar 

  86. I. Manjubala, T.S. Sampath Kumar, Preparation of biphasic calcium phosphate doped with magnesium fluoride for osteoporotic applications. J. Mater. Sci. Lett. 20, 1225–1227 (2001). https://doi.org/10.1023/A:1010926923815

    Article  CAS  Google Scholar 

  87. K. Hashimoto, T. Khajihara, Y. Toda, T. Kanazawa, Preparation of (Mg,Fe)-containing whitlockite ceramics. Phosphorus Res. Bull. 10, 329–334 (1999). https://doi.org/10.3363/prb1992.10.0_329

    Article  CAS  Google Scholar 

  88. J.S. Rabelo Neto, T.B. Knopf, M.C. Fredel, S. Olate, P.H. de Moraes, Synthesis and characterization of calcium phosphate compounds with strontium and magnesium ionic substitutions. Int. J. Morphol. 33, 1189–1193 (2015). https://doi.org/10.4067/s0717-95022015000300061

    Article  Google Scholar 

  89. S. Ben-Moussa, A. Mehri, M. Gruselle, P. Beaunier, G. Costentin, B. Badraoui, Combined effect of magnesium and amino glutamic acid on the structure of hydroxyapatite prepared by hydrothermal method. Mater. Chem. Phys. 212, 21–29 (2018). https://doi.org/10.1016/j.matchemphys.2018.03.017

    Article  CAS  Google Scholar 

  90. I.R. Gibson, W. Bonfield, Preparation and characterization of magnesium/carbonate co-substituted hydroxyapatites. J. Mater. Sci. Mater. Med. 13, 685–693 (2002). https://doi.org/10.1023/A:1015793927364

    Article  CAS  Google Scholar 

  91. I. Mayer, J.D.B. Featherstone, N. Noejovichd, D. Gedalia, The thermal decomposition of Mg-containing carbonate apatites. J. Solid State Chem. 235, 230–235 (1985). https://doi.org/10.1016/0022-4596(85)90060-X

    Article  Google Scholar 

  92. L.A. Rasskazova, I.V. Zhuk, N.M. Korotchenko, A.S. Brichkov, Y.W. Chen, E.A. Paukshtis, V.K. Ivanov, I.A. Kurzina, V.V. Kozik, Synthesis of magnesium- and silicon-modified hydroxyapatites by microwave-assisted method. Sci. Rep. 9, 1–10 (2019). https://doi.org/10.1038/s41598-019-50777-x

    Article  CAS  Google Scholar 

  93. F. Ren, Y. Leng, R. Xin, X. Ge, Synthesis, characterization and ab initio simulation of magnesium-substituted hydroxyapatite. Acta Biomater. 6, 2787–2796 (2010). https://doi.org/10.1016/j.actbio.2009.12.044

    Article  CAS  Google Scholar 

  94. W.L. Suchanek, K. Byrappa, P. Shuk, R.E. Riman, V.F. Janas, K.S. Tenhuisen, Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemical–hydrothermal method. Biomaterials 25, 4647–4657 (2004). https://doi.org/10.1016/j.biomaterials.2003.12.008

    Article  CAS  Google Scholar 

  95. X. Li, A. Ito, Y. Sogo, X. Wang, R.Z. LeGeros, Solubility of Mg-containing β-tricalcium phosphate at 25 °C. Acta Biomater. 5, 508–517 (2009). https://doi.org/10.1016/j.actbio.2008.06.010

    Article  CAS  Google Scholar 

  96. A. Hanifi, M.H. Fathi, H.M.M. Sadeghi, J. Varshosaz, Mg2+ substituted calcium phosphate nano particles synthesis for non viral gene delivery application. J. Mater. Sci. Mater. Med. 21, 2393–2401 (2010). https://doi.org/10.1007/s10856-010-4088-3

    Article  CAS  Google Scholar 

  97. S. Kannan, J.M. Ventura, J.M.F. Ferreira, Aqueous precipitation method for the formation of Mg-stabilized β-tricalcium phosphate: an X-ray diffraction study. Ceram. Int. 33, 637–641 (2007). https://doi.org/10.1016/j.ceramint.2005.11.014

    Article  CAS  Google Scholar 

  98. S. Kannan, A.F. Lemos, J.H.G. Rocha, J.M.F. Ferreira, Characterization and mechanical performance of the Mg-stabilized β-Ca3(PO4)2 prepared from Mg-substituted Ca-deficient apatite. J. Am. Ceram. Soc. 89, 2757–2761 (2006)

    Article  CAS  Google Scholar 

  99. M.S. Sader, R.Z. Legeros, G.A. Soares, Human osteoblasts adhesion and proliferation on magnesium-substituted tricalcium phosphate dense tablets. J. Mater. Sci. Mater. Med. 20, 521–527 (2009). https://doi.org/10.1007/s10856-008-3610-3

    Article  CAS  Google Scholar 

  100. J.C. Araújo, M.S. Sader, E.L. Moreira, V.C.A. Moraes, R.Z. LeGeros, G.A. Soares, Maximum substitution of magnesium for calcium sites in Mg-β-TCP structure determined by X-ray powder diffraction with the Rietveld refinement. Mater. Chem. Phys. 118, 337–340 (2009). https://doi.org/10.1016/j.matchemphys.2009.07.064

    Article  CAS  Google Scholar 

  101. D.S. Tavares, L.O. de Castro, G.D.A. de Soares, G.G. Alves, J.M. Granjeiro, Synthesis and cytotoxicity evaluation of granular magnesium substituted β-tricalcium phosphate. J. Appl. Oral Sci. 21, 37–42 (2013)

    Article  CAS  Google Scholar 

  102. R.C. Richard, M.S. Sader, J. Dai, R.M.S.M. Thiré, G.D.A. Soares, Beta-type calcium phosphates with and without magnesium: From hydrolysis of brushite powder to robocasting of periodic scaffolds. J. Biomed. Mater. Res. Part A. 102, 3685–3692 (2014). https://doi.org/10.1002/jbm.a.35040

    Article  CAS  Google Scholar 

  103. K. Salma-Ancane, L. Stipniece, A. Putnins, L. Berzina-Cimdina, Development of Mg-containing porous β-tricalcium phosphate scaffolds for bone repair. Ceram. Int. 41, 4996–5004 (2015). https://doi.org/10.1016/j.ceramint.2014.12.065

    Article  CAS  Google Scholar 

  104. N.A. Moslim, N. Ahmad, S.R. Kasim, Effect of Mg concentrations on the properties of biphasic calcium phosphate (BCP). In: AIP Conference Proceedings, vol. 2068 (2019). https://doi.org/10.1063/1.5089382

  105. R. Sasidharan Pillai, V.M. Sglavo, Effect of MgO addition on solid state synthesis and thermal behavior of beta-tricalcium phosphate. Ceram. Int. 41, 2512–2518 (2015). https://doi.org/10.1016/j.ceramint.2014.10.073

    Article  CAS  Google Scholar 

  106. S. Ben Abdelkader, I. Khattech, C. Rey, M. Jemal, Synthése, caractérisation et thermochimie d’apatites calco-magnésiennes hydroxylées et fluorées. Thermochim. Acta. 376, 25–36 (2001). https://doi.org/10.1016/s0040-6031(01)00565-2

    Article  CAS  Google Scholar 

  107. M.C.F. Magalhães, M.O.G. Costa, On the solubility of whitlockite, Ca9Mg(HPO4)(PO4)6, in aqueous solution at 298.15 K. Monatshefte Fur Chemie. 149, 253–260 (2018). https://doi.org/10.1007/s00706-017-2129-z

    Article  CAS  Google Scholar 

  108. G.C. Li, P. Wang, C.B. Liu, Hydrothermal synthesis of whitlockite. J. Inorg. Mater. 32, 1128–1132 (2017). https://doi.org/10.15541/jim20160704

    Article  Google Scholar 

  109. A.C. Tas, Transformation of brushite (CaHPO4·2H2O) to whitlockite (Ca9Mg(HPO4)(PO4)6) or other CaPs in physiologically relevant solutions. J. Am. Ceram. Soc. 99, 1200–1206 (2016). https://doi.org/10.1111/jace.14069

    Article  CAS  Google Scholar 

  110. A. Yücel, K. Onar, C.C. Turan, T. Depci, M.E. Yakıncı, Synthesis of nano size whitlockite bioceramic precursor from Sea Urchin skeleton. TIP TEKNO 16 Anatyla (2016), pp. 348–350

  111. J. Trinkunaite-Felsen, Z. Stankeviciute, J.C. Yang, T.C.K. Yang, A. Beganskiene, A. Kareiva, Calcium hydroxyapatite/whitlockite obtained from dairy products: simple, environmentally benign and green preparation technology. Ceram. Int. 40, 12717–12722 (2014). https://doi.org/10.1016/j.ceramint.2014.04.120

    Article  CAS  Google Scholar 

  112. C. Qi, F. Chen, J. Wu, Y.J. Zhu, C.N. Hao, J.L. Duan, Magnesium whitlockite hollow microspheres: a comparison of microwave-hydrothermal and conventional hydrothermal syntheses using fructose 1,6-bisphosphate, and application in protein adsorption. RSC Adv. 6, 33393–33402 (2016). https://doi.org/10.1039/c6ra00775a

    Article  CAS  Google Scholar 

  113. C.C. Lin, Y. Wang, Y. Zhou, Y. Zeng, A rapid way to synthesize magnesium whitlockite microspheres for high efficiency removing heavy metals. Desalin. Water Treat. 162, 220–227 (2019). https://doi.org/10.5004/dwt.2019.24290

    Article  CAS  Google Scholar 

  114. X. Guo, X. Liu, H. Gao, X. Shi, N. Zhao, Y. Wang, Hydrothermal growth of whitlockite coating on β-tricalcium phosphate surfaces for enhancing bone repair potential. J. Mater. Sci. Technol. 34, 1054–1059 (2018). https://doi.org/10.1016/j.jmst.2017.07.009

    Article  Google Scholar 

  115. C. Wang, K.J. Jeong, H.J. Park, M. Lee, S.C. Ryu, D.Y. Hwang, K.H. Nam, I.H. Han, J. Lee, Synthesis and formation mechanism of bone mineral, whitlockite nanocrystals in tri-solvent system. J. Colloid Interface Sci. 569, 1–11 (2020). https://doi.org/10.1016/j.jcis.2020.02.072

    Article  CAS  Google Scholar 

  116. S. Batool, U. Liaqat, Z. Hussain, M. Sohail, Synthesis, characterization and process optimization of bone whitlockite. Nanomaterials 10, 1–14 (2020). https://doi.org/10.3390/nano10091856

    Article  CAS  Google Scholar 

  117. G. Jose, K.T. Shalumon, H.T. Liao, C.Y. Kuo, J.P. Chen, Preparation and characterization of surface heat sintered nanohydroxyapatite and nanowhitlockite embedded poly (lactic-co-glycolic acid) microsphere bone graft scaffolds: In vitro and in vivo studies. Int. J. Mol. Sci. 21, 1–20 (2020). https://doi.org/10.3390/ijms21020528

    Article  CAS  Google Scholar 

  118. Y. Chang, R. Zhao, H. Wang, L. Pang, J. Ding, Y. Shen, Y. Guo, D. Wang, A novel injectable whitlockite-containing borosilicate bioactive glass cement for bone repair. J. Non Cryst. Solids. 547, 120291 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120291

    Article  CAS  Google Scholar 

  119. A. Yücel, S. Sezer, E. Birhanlı, T. Ekinci, E. Yalman, T. Depci, Synthesis and characterization of whitlockite from sea urchin skeleton and investigation of antibacterial activity. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.08.170

    Article  Google Scholar 

  120. L. Bauer, M. Antunović, A. Rogina, M. Ivanković, H. Ivanković, Bone-mimetic porous hydroxyapatite/whitlockite scaffolds: preparation, characterization and interactions with human mesenchymal stem cells. J. Mater. Sci. (2020). https://doi.org/10.1007/s10853-020-05489-3

    Article  Google Scholar 

  121. H.L. Jang, G. Bin Zheng, J. Park, H.D. Kim, H.R. Baek, H.K. Lee, K. Lee, H.N. Han, C.K. Lee, N.S. Hwang, J.H. Lee, K.T. Nam, In vitro and in vivo evaluation of whitlockite biocompatibility: comparative study with hydroxyapatite and β-tricalcium phosphate. Adv. Healthc. Mater. 5, 128–136 (2016). https://doi.org/10.1002/adhm.201400824

    Article  CAS  Google Scholar 

  122. M. Hu, F. Xiao, Q.F. Ke, Y. Li, X.D. Chen, Y.P. Guo, Cerium-doped whitlockite nanohybrid scaffolds promote new bone regeneration via SMAD signaling pathway. Chem. Eng. J. 359, 1–12 (2019). https://doi.org/10.1016/j.cej.2018.11.116

    Article  CAS  Google Scholar 

  123. Y. Yang, H. Wang, H. Yang, Y. Zhao, J. Guo, X. Yin, T. Ma, X. Liu, L. Li, Magnesium-based whitlockite bone mineral promotes neural and osteogenic activities. ACS Biomater. Sci. Eng. 6, 5785–5796 (2020). https://doi.org/10.1021/acsbiomaterials.0c00852

    Article  CAS  Google Scholar 

  124. N. Sundaram, M. Pillai, K. Eswar, S. Amirthalingam, U. Mony, P.K. Varma, R. Jayakumar, Injectable nano whitlockite incorporated chitosan hydrogel for effective hemostasis. CS Appl. Bio Mater. 2, 865–873 (2019). https://doi.org/10.1021/acsabm.8b00710

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Usman Liaqat or Zakir Hussain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batool, S., Liaqat, U., Babar, B. et al. Bone whitlockite: synthesis, applications, and future prospects. J. Korean Ceram. Soc. 58, 530–547 (2021). https://doi.org/10.1007/s43207-021-00120-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-021-00120-w

Keywords

Navigation