Skip to main content

Advertisement

Log in

Electrically stimulated hydroxyapatite–barium titanate composites demonstrate immunocompatibility in vitro

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

For fabricating the filler materials for tissue re-growth, the primary concern should be focused on the immunocompatibility of the material. Lymphocyte T-cells and macrophages activate each other and induce immune suppressive effects. Polarized hydroxyapatite–barium titanate composite surfaces showed comparatively less macrophage activity than unpolarized surfaces. Lymphocytes isolated from human umbilical cord blood were cultured separately on both polarized and unpolarized samples. The macrophage with nitric oxide and myeloperoxidase showed less activity on polarized composite surfaces as compared to lipopolysaccharide of stimulated cells from which it can be inferred that the polarized composites showed immunocompatibility for which these materials can be used a preferred material in tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E. Fukada, I. Yasuda, On the piezoelectric effect of bone. J. Phys. Soc. Japan 12, 1158–1162 (1957)

    Article  Google Scholar 

  2. S. Swain, T.R. Rautray, Silver doped hydroxyapatite coatings by sacrificial anode deposition under magnetic field. J. Mater. Sci. Mater. Med. 28, 160–164 (2017)

    Article  CAS  Google Scholar 

  3. K.H. Kim, R. Narayanan, T.R. Rautray, Surface modification of titanium for biomaterial applications (Nova Publishers, New York, 2010)

    Google Scholar 

  4. K. Yamashita, K. Kitagaki, T. Umegaki, Thermal instability and proton conductivity of ceramic hydroxyapatite at high temperatures. J. Am. Ceram. Soc. 78, 1191–1197 (1995)

    Article  CAS  Google Scholar 

  5. C. Ribeiro, D.M. Correia, S. Ribeiro, V. Sencadas, G. Botelho, S. Lanceros-Méndez, Piezoelectric poly(vinylidene fluoride) microstructure and poling state in active tissue engineering. Eng. Life Sci. 15, 351–356 (2015)

    Article  CAS  Google Scholar 

  6. T.R. Rautray, R. Narayanan, T.Y. Kwon, K.H. Kim, Accelerator based synthesis of hydroxyapatite by MeV ion implantation. Thin Solid Films 518, 3160–3163 (2010)

    Article  CAS  Google Scholar 

  7. S. Swain, T.R. Rautray, R. Narayanan Sr., Mg, and Co substituted hydroxyapatite coating on TiO2 nanotubes formed by electrochemical methods. Adv. Sci. Lett. 22, 482–487 (2016)

    Article  Google Scholar 

  8. A.A. Gandhi, M. Wojtas, S.B. Lang, A.L. Kholkin, S.A.M. Tofail, Piezoelectricity in poled hydroxyapatite ceramics. J. Am. Ceram. Soc. 97, 2867–2872 (2014)

    Article  CAS  Google Scholar 

  9. K. Yamashita, N. Oikawa, T. Umegaki, Acceleration and deceleration of bone-like crystal growth on ceramic hydroxyapatite by electric poling. Chem. Mater. 8, 2697–2700 (1996)

    Article  CAS  Google Scholar 

  10. K. Schmidt-Bleek, A. Petersen, A. Dienelt, C. Schwarz, G.N. Duda, Initiation and early control of tissue regeneration—bone healing as a model system for tissue regeneration. Expert Opin. Biol. Ther. 14, 247–259 (2014)

    Article  CAS  Google Scholar 

  11. L. Prantl, S. Fichtner-Feigl, F. Hofstaedter, A. Lenich, M. Eisenmann-Klein, S. Schreml, Flow cytometric analysis of peripheral blood lymphocyte subsets in patients with silicone breast implants. Plast. Reconstr. Surg. 121, 25–30 (2008)

    Article  CAS  Google Scholar 

  12. A. Mantovani, A. Sica, S. Sozzani, P. Allavena, A. Vecchi, M. Locati, The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25, 677–686 (2004)

    Article  CAS  Google Scholar 

  13. D. Burger, J.M. Dayer, The role of human T-lymphocyte-monocyte contact in inflammation and tissue destruction. Arthritis Res. 4, S169–S176 (2002)

    Article  Google Scholar 

  14. S. Swain, R.N. Padhy, T.R. Rautray, Polarized piezoelectric bioceramic composites exhibit antibacterial activity. Mater. Chem. Phys. 239, 122002 (2020)

    Article  CAS  Google Scholar 

  15. R. Patnaik, R.N. Padhy, Probit analysis of comparative assays on toxicities of lead chloride and lead acetate to in vitro cultured human umbilical cord blood lymphocytes. Interdiscip. Toxicol. 8, 35–43 (2015)

    Article  Google Scholar 

  16. K.W. Lee, C.M. Bae, J.Y. Jung, G.B. Sim, T.R. Rautray, H.J. Lee, T.Y. Kwon, K.H. Kim, Surface characteristics and biological studies of hydroxyapatite coating by a new method. J. Biomed. Mater. Res. B. 98, 395–407 (2011)

    Article  Google Scholar 

  17. C. Gerhauser, K. Klimo, E. Heiss, I. Neumann, A. Gamal-Eldeen, J. Knauft, G.Y. Liu, S. Sitthimonchai, N. Frank, Mechanism-based in vitro screening of potential cancer chemopreventive agents. Mutat. Res. 523–524, 163–172 (2003)

    Article  Google Scholar 

  18. J.E. Krawisz, P. Sharon, W.F. Stenson, Quantitative assay for acute intestinal inflammation based on myeloperoxidase activity. Gastroenterology 87, 1344–1350 (1984)

    Article  CAS  Google Scholar 

  19. K. Anselme, L. Ploux, A. Ponche, Cell/material interfaces: influence of surface chemistry and surface topography on cell adhesion. J. Adhes. Sci. Technol. 24, 831–852 (2010)

    Article  CAS  Google Scholar 

  20. W.G. Brodbeck, M.S. Shive, E. Colton, Y. Nakayama, T. Matsuda, J.M. Anderson, Influence of biomaterial surface chemistry on the apoptosis of adherent cells. J. Biomed. Mater. Res. 55, 661–668 (2001)

    Article  CAS  Google Scholar 

  21. R.K. Srivastava, H.Y. Dar, P.K. Mishra, Immunoporosis: immunology of osteoporosis—role of T cells. Front. Immunol. 9, 657 (2018)

    Article  Google Scholar 

  22. L. Santambrogio, Biomaterials in Regenerative Medicine and the Immune System (Springer Nature, Cham, 2015)

    Book  Google Scholar 

  23. A.K. Dubey, K. Balani, B. Basu, Electrically active biocomposites as smart scaffold for bone tissue engineering, in Nanomedicine: Technologies and Applications, ed. by T.J. Webster (Woodhead Publishing, Oxford, 2012), pp. 537–570

    Chapter  Google Scholar 

  24. D.T. Chang, J.A. Jones, H. Meyerson, E. Colton, I.K. Kwon, T. Matsuda, J.M. Anderson, Lymphocyte/macrophage interactions: biomaterial surface-dependent cytokine, chemokine, and matrix protein production. J. Biomed. Mater. Res. A. 87, 676–687 (2008)

    Article  Google Scholar 

  25. M. Nakamura, A. Nagai, T. Okura, Y. Sekijima, T. Hentunen, K. Yamashita, Enhanced osteoblastic adhesion through improved wettability on polarized hydroxyapatite. J. Ceram. Soc. Japan 118, 474–478 (2010)

    Article  CAS  Google Scholar 

  26. Y. Shizukuda, S. Tang, R. Yokota, J.A. Ware, Vascular endothelial growth factor-induced endothelial cell migration and proliferation depend on a nitric oxide-mediated decrease in protein kinase C delta activity. Circ. Res. 85, 247–256 (1999)

    Article  CAS  Google Scholar 

  27. A.A. Haroun, A. Gamal-Eldeen, D.R. Harding, Preparation, characterization and in vitro biological study of biomimetic three-dimensional gelatin-montmorillonite/cellulose scaffold for tissue engineering. J. Mater. Sci. Mater. Med. 20, 2527–2540 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Department of Science and Technology, Govt. of India with Grant No. SB/SO/HS-113/2013 (A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapash Ranjan Rautray.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interest.

Ethical statement

There are no animal experiments carried out for this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swain, S., Padhy, R.N. & Rautray, T.R. Electrically stimulated hydroxyapatite–barium titanate composites demonstrate immunocompatibility in vitro. J. Korean Ceram. Soc. 57, 495–502 (2020). https://doi.org/10.1007/s43207-020-00048-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-020-00048-7

Keywords

Navigation