Skip to main content
Log in

Preparation, characterization and in vitro biological study of biomimetic three-dimensional gelatin–montmorillonite/cellulose scaffold for tissue engineering

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

This work focused on studying the effect of blending gelatin (Gel) with Cellulose (Cel), in the presence of montmorillonite (MMT), on the swelling behavior, in vitro degradation and surface morphology. Additionally, the effect of the prepared biocomposites on the characteristics of the human osteosarcoma cells (Saos-2), including proliferation, scaffold/cells interactions, apoptosis and their potential of the cells to induce osteogenesis and differentiation was evaluated. The crosslinked biocomposites with glutaraldehyde (GA) or N,N-methylene-bisacrylamide (MBA) was prepared via an intercalation process and freeze-drying technique. Properties including SEM morphology, X-ray diffraction characterization and in vitro biodegradation were investigated. The successful generation of 3-D biomimetic porous scaffolds incorporating Saos-2 cells indicated their potential for de novo bone formation that exploits cell–matrix interactions. In vitro studies revealed that the scaffolds containing 12 and 6% MMT crosslinked by 5 and 0.5% GA seem to be the two most efficient and effective biodegradable scaffolds, which promoted Saos-2 cells proliferation, migration, expansion, adhesion, penetration, spreading, and differentiation, respectively. MMT improved cytocompatibility between the osteoblasts and the biocomposite. In vitro analysis indicated good biocompatibility of the scaffold and presents the scaffold as a new potential candidate as suitable biohybrid material for tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zheng JP, Wang CZ, Yao KD. Preparation of biomimetic three-dimensional gelatin/montmorillonite-chitosan scaffold for tissue engineering. React Funct Polym. 2007;67:780–8.

    Article  CAS  Google Scholar 

  2. Dasdia T, Bazzaco L, Dolfine E. Organ culture in 3-dimensional matrix. In vitro model for evaluating biological compliance of synthetic meshes for abdominal wall repair. J Biomed Mater Res. 1998;43:204–9.

    Article  CAS  PubMed  Google Scholar 

  3. Grande DA, Halberstadt C, Manji R. Evaluation of matrix scaffolds for tissue engineering of articular cartilage grafts. J Biomed Mater Res. 1997;34:211–20.

    Article  CAS  PubMed  Google Scholar 

  4. Nagahama H, Kashiki T, Tamura H. Preparation of biodegradable chitin/gelatin membranes with GlcNAc for tissue engineering applications. Carbohydrate Polymers 2008; online, http://www.sciencedirect.com.

  5. Lee SB, Kim YH, Lee YM. Study of gelatin-containing artificial skin V: fabrication of gelatin scaffolds using a salt-leaching method. Biomaterials. 2005;26:1961–8.

    Article  CAS  PubMed  Google Scholar 

  6. Muzzarelli RA. Biochemical significance of exopenous chitins and chitosans in animals and patients. Carbohydr Polym. 1993;20:7.

    Article  CAS  Google Scholar 

  7. Choi YS, Hong SR, Nam YS. Study on gelatin-containing artificial skin I: preparation and characteristics of novel gelatin-alginate sponge. Biomaterials. 1999;20:409–17.

    Article  CAS  PubMed  Google Scholar 

  8. Martucci JF, Ruseckaite RA, Vazquez A. Creep of glutaraldehyde-crosslinked gelatin films. Mater Sci Eng A. 2006;435:681–6.

    Article  CAS  Google Scholar 

  9. Achet D, He XW. Determination of the renaturation level in gelatin films. Polymer. 1995;36:787–91.

    Article  CAS  Google Scholar 

  10. Arvanitoyannis IS, Nakayama A, Aiba S. Chitosan and gelatin based edible films: state diagrams, mechanical and permeation properties. Carbohydr Polym. 1998;37:371–82.

    Article  CAS  Google Scholar 

  11. Awad H, Erickson G, Guilak F. Biomaterials for cartilage tissue engineering. In: Lewandrowski KU, Wise D, Trantolo D, Gresser J, Yaszemski M, Altobelli D, editors. Tissue engineering and biodegradable equivalents: scientific and clinical applications. New York: Marcel Dekker Inc; 2002. p. 267–99.

    Google Scholar 

  12. Xia W, Lu W, Cao Y. Tissue engineering of cartilage with the use of chitosan–gelatin complex scaffolds. J Biomed Mater Res Part B: Appl Biomater. 2004;71B:373–80.

    Article  CAS  Google Scholar 

  13. Huang Y, Onyeri S, Madihally SV. In vitro characterization of chitosan–gelatin scaffolds for tissue engineering. Biomaterials. 2005;26:7616–27.

    Article  CAS  PubMed  Google Scholar 

  14. Couderc H, Delbreilh L, Saiter JM. Relaxation in poly(ethylene terphthalate glycol)/montmorillonite nanocomposites studied by dielectric methods. J Non-Cryst Solids. 2007;353:4334–8.

    Article  CAS  ADS  Google Scholar 

  15. Zheng JP, Li P, Yao KD. Preparation and characterization of gelatin/montmorillonite nanocomposite. J Mater Sci Lett. 2002;21:779–81.

    Article  CAS  Google Scholar 

  16. Ito M, Nagai K. Evaluation of degradation on nylon-6 and nylon-6/montmorillonite nanocomposite by color measurement. J Appl Polym Sci. 2008;108:3487–94.

    Article  CAS  Google Scholar 

  17. Fan J, Chen G, Zongneng QI. SEM study of a polystyrene/clay nanocomposite. J Appl Polym Sci. 2002;83:66–9.

    Article  CAS  Google Scholar 

  18. Kawasumi M, Hasegawa N, Okada A. Preparation and mechanical properties of polypropylene-clay hybrids. Macromolecules. 1997;30:6333–8.

    Article  CAS  ADS  Google Scholar 

  19. Agag T, Koga T, Takeichi T. Studies on thermal and mechanical properties of polyimide-clay nanocomposites. Polymer. 2001;42:3399–408.

    Article  CAS  Google Scholar 

  20. Gang Z, Kun F, Pingsheng H. Study on bulk intercalation polymerization of PMMA/montmorillonite intercalated nanocomposite by dynamic torsional vibration method. J Mater Sci Lett. 2002;21:761–3.

    Article  Google Scholar 

  21. Kojima Y, Usuki A, Kamigaito O. Mechanical properties of nylon 6-clay hybrid. J Mater Res. 1993;8:1185.

    Article  CAS  ADS  Google Scholar 

  22. John MJ, Thomas S. Biofibers and biocomposites review. Carbohydr Polym. 2008;71:343–64.

    Article  CAS  Google Scholar 

  23. Czaja KW, David J, Brown RM. The future prospects of microbial cellulose in biomedical applications review. Biomacromolecules. 2007;8:1–12.

    Article  CAS  PubMed  Google Scholar 

  24. Coradin T, Bah S, Livage J. Gelatin/silicate interactions: from nanoparticles to composite gels. J Colloids Surf B: Biointerfaces. 2004;35:53–8.

    Article  CAS  Google Scholar 

  25. Chao GT, Qian ZY, Wei YQ. Synthesis, characterization, and hydrolytic degradation behavior of a novel biodegradable pH-sensitive hydrogel based on polycaprolactone, methacrylic acid and poly(ethylene glycol). J Biomed Mater Res Part A. 2008;85:36–46.

    Article  CAS  Google Scholar 

  26. Kenawy E, El-Newehy M, Ottenbrite RM. A new degradable hydroxamate linkage for pH-controlled drug delivery. Biomacromolecules. 2007;8:196–201.

    Article  CAS  Google Scholar 

  27. Giuliano M, Lauricella M, Tesoriere EG. Induction of apoptosis in human retinoblastoma cells by topoisomerase inhibitors invest ophthalmol. Vis Sci. 1998;39:1300–11.

    CAS  Google Scholar 

  28. Hansen MB, Nielsen SE, Berg K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods. 1989;119:203.

    Article  CAS  PubMed  Google Scholar 

  29. Gohel A, Mccarthy M, Gronowicz G. Estrogen prevents glucocorticoid-induced apoptosis in osteoblasts in vivo and in vitro. Endocrinology. 1999;140:5339–47.

    Article  CAS  PubMed  Google Scholar 

  30. Smith PK, Krohn R, Klenk DC. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985;150:76–80.

    Article  CAS  PubMed  Google Scholar 

  31. Boyan BD, Schwartz Z, Swain LD. Localization of 1, 25-(OH)2D3-responsive alkaline phosphatase in osteoblast-like cells and growth cartilage cells in culture. J Biol Chem. 1989;264:11879–86.

    CAS  PubMed  Google Scholar 

  32. Gerhäuser C, Klimo K, Frank N. Mechanism-based in vitro screening of potential cancer chemopreventive agents. Mutat Res. 2003;523:163–72.

    PubMed  Google Scholar 

  33. Mikos AG, Lyman MD, Langer R. Wetting of poly(l-lactic acid) and poly(dl-lactic-co-glycolic acid) foams for tissue culture. Biomaterials. 1994;15:55–8.

    Article  CAS  PubMed  Google Scholar 

  34. Gao J, Niklason L, Langer R. Surface hydrolysis of poly(glycolic acid) meshes increases the seeding density of vascular smooth muscle cells. J Biomed Mater Res. 1998;42:417–24.

    Article  CAS  PubMed  Google Scholar 

  35. Burugapalli K, Bhatia D, Choudhary V. Interpenetrating polymer networks based on poly(acrylic acid) and gelatin. I: swelling and thermal behaviour. J Appl Polym Sci. 2001;82:217–27.

    Article  CAS  Google Scholar 

  36. Nickerson MT, Paulson AT, Rousseau D. Some physical properties of crosslinked gelatin-moltdextrin hydrogels. Food Hydrocolloid. 2007;20:1072–9.

    Article  CAS  Google Scholar 

  37. Matsuda S, Iwata H, Ikada Y. Bioadhesion of gelatin films crosslinked with glutaraldehyde. J Biomed Mater Res. 1999;45:20–7.

    Article  CAS  PubMed  Google Scholar 

  38. Zheng JP, Xi LF, Yao KD. Correlation between reaction environment and intercalation effect in the synthesis of gelatin-montmorillonite hybrid nanocomposite. J Mater Sci Lett. 2003;22:1179–81.

    Article  CAS  Google Scholar 

  39. Zheng JP, Li P, Yao KD. Preparation and characterization of gelatin-montmorillonite nanocomposite. J Mater Sci Lett. 2002;21:770–81.

    Google Scholar 

  40. Lin FH, Yao CH, Sun JS, Liu HC, Huang CW. Biological effects and cytotoxicity of the composite composed by tricalcium phosphate and glutaraldehyde crosslinked gelatin. Biomaterials. 1998;19:905–17.

    Article  CAS  PubMed  Google Scholar 

  41. Jonsson ZO. Proliferating cell nuclear antigen: more than a clamp for DNA polymerases. Bioassay. 1997;19:967–75.

    Article  CAS  Google Scholar 

  42. Kamali N, McCulloch G, Limeback H. Direct flow cytometric quantification of alkaline phosphatase activity in rat bone marrow stromal cells. Hisrochem Cytochem. 1992;40:1059–65.

    Google Scholar 

Download references

Acknowledgements

Dr. A. A. Haroun would like to thank laboratories of Prof. D. R. K. Harding and Prof. G. Jameson at College of Sciences, Palmerston North, Massey University, New Zealand for support and generous assistance toward carrying out some of the necessary investigations in this work, during his scientific visit. Also, this work was supported by Center of Excellence for Advanced Sciences, National, Research Center, Cairo, Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed A. Haroun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haroun, A.A., Gamal-Eldeen, A. & Harding, D.R.K. Preparation, characterization and in vitro biological study of biomimetic three-dimensional gelatin–montmorillonite/cellulose scaffold for tissue engineering. J Mater Sci: Mater Med 20, 2527–2540 (2009). https://doi.org/10.1007/s10856-009-3818-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3818-x

Keywords

Navigation