Skip to main content
Log in

Cauchy problem for fractional non-autonomous evolution equations

  • Original Paper
  • Published:
Banach Journal of Mathematical Analysis Aims and scope Submit manuscript

Abstract

This paper deals with the Cauchy problem to a class of nonlinear time fractional non-autonomous integro-differential evolution equation of mixed type via measure of noncompactness in infinite-dimensional Banach spaces. Combining the theory of fractional calculus and evolution families, the fixed point theorem with respect to convex-power condensing operator and a new estimation technique of the measure of noncompactness, we obtained the existence of mild solutions under the situation that the nonlinear function satisfy some appropriate local growth condition and a noncompactness measure condition. Our results generalize and improve some previous results on this topic, since the condition of uniformly continuity of the nonlinearity is not required, and also the strong restriction on the constants in the condition of noncompactness measure is completely deleted. As samples of applications, we consider the initial value problem to a class of time fractional non-autonomous partial differential equation with homogeneous Dirichlet boundary condition at the end of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bajlekova, E.G.: Fractional Evolution Equations in Banach Spaces, Ph.D. thesis, Department of Mathematics, Eindhoven University of Technology (2001)

  2. Chen, P., Li, Y.: Monotone iterative technique for a class of semilinear evolution equations with nonlocal conditions. Results Math. 63, 731–744 (2013)

    Article  MathSciNet  Google Scholar 

  3. Chen, P., Zhang, X., Li, Y.: Approximation technique for fractional evolution equations with nonlocal integral conditions. Mediterr. J. Math. 14, 226 (2017)

    Article  MathSciNet  Google Scholar 

  4. Chen, P., Zhang, X., Li, Y.: Fractional non-autonomous evolution equation with nonlocal conditions. J. Pseudodiffer. Oper. Appl. (2018). https://doi.org/10.1007/s11868-018-0257-9

    Article  Google Scholar 

  5. Chen, P., Zhang, X., Li, Y.: A blowup alternative result for fractional nonautonomous evolution equation of Volterra type. Commun. Pure Appl. Anal. 17, 1975–1992 (2018)

    Article  MathSciNet  Google Scholar 

  6. Corduneanu, C.: Principles of Differential and Integral Equations. Allyn and Bacon, Boston (1971)

    MATH  Google Scholar 

  7. Deimling, K.: Nonlinear Functional Analysis. Springer, New York (1985)

    Book  Google Scholar 

  8. El-Borai, M.M.: The fundamental solutions for fractional evolution equations of parabolic type. J. Appl. Math. Stoch. Anal. 3, 197–211 (2004)

    Article  MathSciNet  Google Scholar 

  9. El-Borai, M.M., El-Nadi, K.E., El-Akabawy, E.G.: On some fractional evolution equations. Comput. Math. Appl. 59, 1352–1355 (2010)

    Article  MathSciNet  Google Scholar 

  10. Friedman, A.: Partial Differential Equations. Holt, Rinehart and Winston, New York (1969)

    MATH  Google Scholar 

  11. Gou, H., Li, B.: Local and global existence of mild solution to impulsive fractional semilinear integro-differential equation with noncompact semigroup. Commun. Nonlinear Sci. Numer. Simul. 42, 204–214 (2017)

    Article  MathSciNet  Google Scholar 

  12. Guo, D.: Solutions of nonlinear integro-differential equations of mixed type in Banach spaces. J. Appl. Math. Simul. 2, 1–11 (1989)

    Article  Google Scholar 

  13. Heinz, H.P.: On the behaviour of measure of noncompactness with respect to differentiation and integration of vector-valued functions. Nonlinear Anal. 7, 1351–1371 (1983)

    Article  MathSciNet  Google Scholar 

  14. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Math, vol. 840. Springer, New York (1981)

    Book  Google Scholar 

  15. Lakshmikantham, V., Leela, S.: Nonlinear Differential Equations in Abstract Spaces. Pergamon Press, New York (1981)

    MATH  Google Scholar 

  16. Li, M., Chen, C., Li, F.B.: On fractional powers of generators of fractional resolvent families. J. Funct. Anal. 259, 2702–2726 (2010)

    Article  MathSciNet  Google Scholar 

  17. Li, K., Peng, J., Jia, J.: Cauchy problems for fractional differential equations with Riemann–Liouville fractional derivatives. J. Funct. Anal. 263, 476–510 (2012)

    Article  MathSciNet  Google Scholar 

  18. Liu, L., Wu, C., Guo, F.: Existence theorems of global solutions of initial value problems for nonlinear integro-differential equations of mixed type in Banach spaces and applications. Comput. Math. Appl. 47, 13–22 (2004)

    Article  MathSciNet  Google Scholar 

  19. Liu, L., Guo, F., Wu, C., Wu, Y.: Existence theorems of global solutions for nonlinear Volterra type integral equations in Banach spaces. J. Math. Anal. Appl. 309, 638–649 (2005)

    Article  MathSciNet  Google Scholar 

  20. Mei, Z., Peng, J., Zhang, Y.: An operator theoretical approach to Riemann–Liouville fractional Cauchy problem. Math. Nachr. 288, 784–797 (2015)

    Article  MathSciNet  Google Scholar 

  21. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin (1983)

    Book  Google Scholar 

  22. Shi, H.B., Li, W.T., Sun, H.R.: Existence of mild solutions for abstract mixed type semilinear evolution equations. Turk. J. Math. 35, 457–472 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Shu, X., Shi, Y.: A study on the mild solution of impulsive fractional evolution equations. Appl. Math. Comput. 273, 465–476 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Sun, J., Zhang, X.: The fixed point theorem of convex-power condensing operator and applications to abstract semilinear evolution equations. Acta Math. Sin. 48, 439–446 (2005). (in Chinese)

    MathSciNet  MATH  Google Scholar 

  25. Tanabe, H.: Functional Analytic Methods for Partial Differential Equations. Marcel Dekker, New York (1997)

    MATH  Google Scholar 

  26. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd edn. Springer, New York (1997)

    Book  Google Scholar 

  27. Wang, J., Zhou, Y.: A class of fractional evolution equations and optimal controls. Nonlinear Anal. Real World Appl. 12, 262–272 (2011)

    Article  MathSciNet  Google Scholar 

  28. Wang, J., Fečkan, M., Zhou, Y.: On the new concept of solutions and existence results for impulsive fractional evolution equations. Dyn. Part. Differ. Equ. 8, 345–361 (2011)

    Article  MathSciNet  Google Scholar 

  29. Wang, R.N., Chen, D.H., Xiao, T.J.: Abstract fractional Cauchy problems with almost sectorial operators. J. Differ. Equ. 252, 202–235 (2012)

    Article  MathSciNet  Google Scholar 

  30. Wang, J., Zhou, Y., Fečkan, M.: Abstract Cauchy problem for fractional differential equations. Nonlinear Dyn. 74, 685–700 (2013)

    Article  MathSciNet  Google Scholar 

  31. Zhou, Y., Jiao, F.: Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 59, 1063–1077 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are extremely grateful to the critical comments and invaluable suggestions made by anonymous honorable reviewers. This work is supported by National Natural Science Foundations of China (no. 11501455, no. 11661071) and Doctoral Research Fund of Northwest Normal University (no. 6014/0002020209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengyu Chen.

Additional information

Communicated by Joseph Ball.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Zhang, X. & Li, Y. Cauchy problem for fractional non-autonomous evolution equations. Banach J. Math. Anal. 14, 559–584 (2020). https://doi.org/10.1007/s43037-019-00008-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43037-019-00008-2

Keywords

Mathematics Subject Classification

Navigation