Skip to main content
Log in

Doubly commuting invariant subspaces for representations of product systems of \(C^*\)-correspondences

  • Original Paper
  • Published:
Annals of Functional Analysis Aims and scope Submit manuscript

Abstract

We obtain a Shimorin Wold-type decomposition for a doubly commuting covariant representation of a product system of \(C^*\)-correspondences over \({\mathbb {N}}_0^k\). This result gives Shimorin-type decompositions of recent Wold-type decompositions by Jeu and Pinto (Adv Math 368:107–149, 2020) for the q-doubly commuting isometries and by Popescu (J Funct Anal 279:108798, 2020) for Doubly \(\Lambda \)-commuting row isometries. Application to the wandering subspaces of the induced representations is explored, and a version of the Beurling–Lax-type characterization is obtained to study doubly commuting invariant subspaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arveson, W.: Continuous analogues of Fock space. Mem. Am. Math. Soc. 80(409), 4–66 (1989)

    MathSciNet  MATH  Google Scholar 

  2. Ball, J., Li, W.S., Timotin, D., Trent, T.: A commutant lifting theorem on the polydisc. Indiana Univ. Math. J. 48, 653–675 (1999)

    Article  MathSciNet  Google Scholar 

  3. Beurling, A.: On two problems concerning linear transformations in Hilbert space. Acta Math. 81, 239–255 (1949)

    Article  MathSciNet  Google Scholar 

  4. Bhat, B.V.R., Bhattacharyya, T.: A model theory for q-commuting contractive tuples. J. Oper. Theory 47, 97–116 (2002)

    MathSciNet  MATH  Google Scholar 

  5. Chattopadhyay, A., Das, B.K., Sarkar, J., Sarkar, S.: Wandering subspaces of the Bergman space and the Dirichlet space over \({\mathbb{D}}^n\). Integral Equ. Oper. Theory 79, 567–577 (2014)

    Article  Google Scholar 

  6. de Jeu, M., Pinto, P.R.: The structure of non-commuting isometries. Adv. Math. 368, 107–149 (2020)

    MathSciNet  MATH  Google Scholar 

  7. Fowler, N.J.: Discrete product systems of Hilbert bimodules. Pac. J. Math. 204(2), 335–375 (2002)

    Article  MathSciNet  Google Scholar 

  8. Halmos, P.R.: Shifts on Hilbert spaces. J. Reine Angew. Math. 208, 102–112 (1961)

    MathSciNet  MATH  Google Scholar 

  9. Helmer, L.: Generalized inner-outer factorizations in non commutative Hardy algebras. Integral Equ. Oper. Theory 84(4), 555–575 (2016)

    Article  MathSciNet  Google Scholar 

  10. Jørgensen, P.E.T., Proskurin, D.P., Samoĭlenko, Y.S.: On \(C^*\)-algebras generated by pairs of \(q\)-commuting isometries. J. Phys. A 38(12), 2669–2680 (2005)

    Article  MathSciNet  Google Scholar 

  11. Lance, E.C.: Hilbert \(C^*\)-Modules, London Mathematical Society Lecture Note Series, vol. 210. Cambridge University Press, Cambridge (1995) (a toolkit for operator algebraists)

  12. Lax, P.D.: Translation invariant subspaces. Acta Math. 101, 163–178 (1959)

    Article  MathSciNet  Google Scholar 

  13. Mandrekar, V.: The validity of Beurling theorems in polydiscs. Proc. Am. Math. Soc. 103, 145–148 (1988)

    Article  MathSciNet  Google Scholar 

  14. Mandrekar, V., Redett, D.A.: Weakly Stationary Random Fields, Invariant Subspaces and Applications. CRC Press, Boca Raton (2018)

    MATH  Google Scholar 

  15. Muhly, P.S., Solel, B.: Tensor algebras over \(C^*\)-correspondences: representations, dilations, and \(C^*\)-envelopes. J. Funct. Anal. 158(2), 389–457 (1998)

    Article  MathSciNet  Google Scholar 

  16. Muhly, P.S., Solel, B.: Tensor algebras, induced representations, and the Wold decomposition. Can. J. Math. 51(4), 850–880 (1999)

    Article  MathSciNet  Google Scholar 

  17. Nica, A.: \(C^*\)-algebras generated by isometries and Wiener–Hopf operators. J. Oper. Theory 27(1), 17–52 (1992)

    MathSciNet  MATH  Google Scholar 

  18. Paschke, W.L.: Inner product modules over \(B^{\ast } \)-algebras. Trans. Am. Math. Soc. 182, 443–468 (1973)

    MathSciNet  MATH  Google Scholar 

  19. Pimsner, M.V.: A Class of \(C^*\)-Algebras Generalizing Both Cuntz–Krieger Algebras and Crossed Products by \({ Z}\), Free Probability Theory (Waterloo, ON, 1995), Fields Inst. Commun., vol. 12, pp. 189–212. American Mathematical Society, Providence (1997)

    MATH  Google Scholar 

  20. Popescu, G.: Isometric dilations for infinite sequences of noncommuting operators. Trans. Am. Math. Soc. 319(2), 523–536 (1989a)

    Article  MathSciNet  Google Scholar 

  21. Popescu, G.: Characteristic functions for infinite sequences of noncommuting operators. J. Oper. Theory 22(1), 51–71 (1989b)

    MathSciNet  MATH  Google Scholar 

  22. Popescu, G.: Doubly \(\Lambda \)-commuting row isometries, universal models, and classification. J. Funct. Anal. 279, 108798 (2020)

    Article  MathSciNet  Google Scholar 

  23. Rieffel, M.A.: Induced representations of \(C^* \)-algebras. Adv. Math. 13, 176–257 (1974)

    Article  Google Scholar 

  24. Rudin, W.: Function Theory in Polydiscs. W. A. Benjamin Inc, New York (1969)

    MATH  Google Scholar 

  25. Sarkar, J.: Wold decomposition for doubly commuting isometries. Linear Algebra Appl. 445, 289–301 (2014)

    Article  MathSciNet  Google Scholar 

  26. Sarkar, J., Sasane, A., Wick, B.D.: Doubly commuting submodules of the Hardy module over polydiscs. Stud. Math. 217(2), 179–192 (2013)

    Article  MathSciNet  Google Scholar 

  27. Sarkar, J., Trivedi, H., Veerabathiran, S.: Covariant representations of subproduct systems: invariant subspaces and curvature. N. Y. J. Math. 24, 211–232 (2018)

    MathSciNet  MATH  Google Scholar 

  28. Sergei, S.: Wold-type decompositions and wandering subspaces for operators close to isometries. J. Reine Angew. Math. 531, 147–189 (2001)

    MathSciNet  MATH  Google Scholar 

  29. Skalski, A., Zacharias, J.: Wold decomposition for representations of product systems of \(C^*\)-correspondences. Int. J. Math. 19(4), 455–479 (2008)

    Article  MathSciNet  Google Scholar 

  30. Słociński, M.: On the Wold-type decomposition of a pair of commuting isometries. Ann. Pol. Math. 37, 255–262 (1980)

    Article  MathSciNet  Google Scholar 

  31. Solel, B.: Representations of product systems over semigroups and dilations of commuting CP maps. J. Funct. Anal. 180(2), 593–618 (2006)

    Article  MathSciNet  Google Scholar 

  32. Solel, B.: Regular dilations of representations of product systems. Math. Proc. R. Ir. Acad. 180(1), 89–110 (2008)

    Article  MathSciNet  Google Scholar 

  33. Trivedi, H., Veerabathiran, S.: Generating wandering subspaces for doubly commuting covariant representations. Integral Equ. Oper. Theory 91, 35 (2019)

    Article  MathSciNet  Google Scholar 

  34. Weber, M.: On \(C^*\)-algebras generated by isometries with twisted commutation relations. J. Funct. Anal. 264(8), 1975–2004 (2013)

    Article  MathSciNet  Google Scholar 

  35. Wold, H.: A Study in the Analysis of Stationary Time Series. Almquist and Wiksell, Uppsala (1938)

    MATH  Google Scholar 

Download references

Acknowledgements

We thank anonymous referee for careful reading of the manuscript and providing many insightful comments and suggestions which helped to improve the exposition. Shankar Veerabathiran is supported by CSIR Fellowship (File No: 09/115(0782)/2017-EMR-I). He is grateful to The LNM Institute of Information Technology for providing research facility and warm hospitality during a visit in December 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harsh Trivedi.

Additional information

Communicated by Baruch Solel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trivedi, H., Veerabathiran, S. Doubly commuting invariant subspaces for representations of product systems of \(C^*\)-correspondences. Ann. Funct. Anal. 12, 47 (2021). https://doi.org/10.1007/s43034-021-00136-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43034-021-00136-7

Keywords

Mathematics Subject Classification

Navigation