Skip to main content
Log in

Generating Wandering Subspaces for Doubly Commuting Covariant Representations

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

We obtain a Halmos–Richter-type wandering subspace theorem for covariant representations of \(C^*\)-correspondences. Further the notion of Cauchy dual and a version of Shimorin’s Wold-type decomposition for covariant representations of \(C^*\)-correspondences is explored and as an application a wandering subspace theorem for doubly commuting covariant representations is derived. Using this wandering subspace theorem generating wandering subspaces are characterized for covariant representations of product systems in terms of the doubly commutativity condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aleman, A., Richter, S., Sundberg, C.: Beurling’s theorem for the Bergman space. Acta Math. 177, 275–310 (1996)

    Article  MathSciNet  Google Scholar 

  2. Arveson, W.: Continuous analogues of Fock space. Mem. Am. Math. Soc. 80(409), iv+66 (1989)

    MathSciNet  MATH  Google Scholar 

  3. Beurling, A.: On two problems concerning linear transformations in Hilbert space. Acta Math. 81, 239–255 (1949)

    Article  MathSciNet  Google Scholar 

  4. Chattopadhyay, A., Das, B.K., Sarkar, J., Sarkar, S.: Wandering subspaces of the Bergman space and the Dirichlet space over \(\mathbb{D}^n\). Integral Equ. Oper. Theory 79, 567–577 (2014)

    Article  Google Scholar 

  5. Cuntz, J.: Simple \(C^*\)-algebras generated by isometries. Commun. Math. Phys. 57(2), 173–185 (1977)

    Article  MathSciNet  Google Scholar 

  6. Douglas, R.G.: Variations on a theme of Beurling. N. Y. J. Math. 17A, 1–10 (2011)

    MathSciNet  MATH  Google Scholar 

  7. Fowler, N.J.: Discrete product systems of Hilbert bimodules. Pac. J. Math. 204(2), 335–375 (2002)

    Article  MathSciNet  Google Scholar 

  8. Halmos, P.R.: Shifts on Hilbert spaces. J. Reine Angew. Math. 208, 102–112 (1961)

    MathSciNet  MATH  Google Scholar 

  9. Helmer, L.: Generalized inner–outer factorizations in non commutative hardy algebras. Integral Equ. Oper. Theory 84(4), 555–575 (2016)

    Article  MathSciNet  Google Scholar 

  10. Izuchi, K.J., Kou, H., Izuchi, Y.: Wandering subspaces and the Beurling type Theorem I. Arch. Math. (Basel) 95(5), 439–446 (2010)

    Article  MathSciNet  Google Scholar 

  11. Lance E.C.: Hilbert \(C^*\)-Modules, London Mathematical Society Lecture Note Series, vol. 210. Cambridge University Press, Cambridge (1995). A toolkit for operator algebraists

  12. Mandrekar, V.: The validity of Beurling theorems in polydiscs. Proc. Am. Math. Soc. 103, 145–148 (1988)

    Article  MathSciNet  Google Scholar 

  13. Muhly, P.S., Solel, B.: Tensor algebras over \(C^*\)-correspondences: representations, dilations, and \(C^*\)-envelopes. J. Funct. Anal. 158(2), 389–457 (1998)

    Article  MathSciNet  Google Scholar 

  14. Muhly, P.S., Solel, B.: Tensor algebras, induced representations, and the wold decomposition. Can. J. Math 51(4), 850–880 (1999)

    Article  MathSciNet  Google Scholar 

  15. Nagy, B.S., Foiaş, C.: Harmonic Analysis of Operators on Hilbert space. North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York; Akadémiai Kiadó, Budapest, 1970, xiii+389 pp

  16. Nica, A.: \(C^*\)-algebras generated by isometries and Wiener–Hopf operators. J. Oper. Theory 27(1), 17–52 (1992)

    MathSciNet  MATH  Google Scholar 

  17. Paschke, W.L.: Inner product modules over \(B^{\ast } \)-algebras. Trans. Am. Math. Soc. 182, 443–468 (1973)

    MathSciNet  MATH  Google Scholar 

  18. Pimsner, M.V.: A class of \(C^*\)-algebras generalizing both Cuntz–Krieger algebras and crossed products by \({\bf Z}\). In: Free Probability Theory (Waterloo, ON, 1995), pp. 189–212, Fields Institute Communications, 12. American Mathematical Society, Providence (1997)

  19. Popescu, G.: Isometric dilations for infinite sequences of noncommuting operators. Trans. Am. Math. Soc. 319(2), 523–536 (1989)

    Article  MathSciNet  Google Scholar 

  20. Redett, D., Tung, J.: Invariant subspaces in Bergman space over the bidisc. Proc. Am. Math. Soc. 138, 2425–2430 (2010)

    Article  MathSciNet  Google Scholar 

  21. Richter, S.: Invariant subspaces of the Dirichlet shift. J. Reine Angew Math. 386, 205–220 (1988)

    MathSciNet  MATH  Google Scholar 

  22. Rieffel, M.A.: Induced representations of \(C^* \)-algebras. Adv. Math. 13, 176–257 (1974)

    Article  Google Scholar 

  23. Rudin, W.: Function Theory in Polydiscs. W. A. Benjamin Inc, New York (1969)

    MATH  Google Scholar 

  24. Sarkar, J.: Wold decomposition for doubly commuting isometries. Linear Algebra Appl. 445, 289–301 (2014)

    Article  MathSciNet  Google Scholar 

  25. Sarkar, J., Sasane, A., Wick, B.D.: Doubly commuting submodules of the Hardy module over polydiscs. Stud. Math. 217(2), 179–192 (2013)

    Article  MathSciNet  Google Scholar 

  26. Sarkar, J., Trivedi, H., Veerabathiran, S.: Covariant representations of subproduct systems: invariant subspaces and curvature. N. Y. J. Math. 24, 211–232 (2018)

    MathSciNet  MATH  Google Scholar 

  27. Sergei, S.: Wold-type decompositions and wandering subspaces for operators close to isometries. J. Reine Angew Math. 531, 147–189 (2001)

    MathSciNet  MATH  Google Scholar 

  28. Skalski, A.: On isometric dilations of product systems of \(C^*\)-correspondences and applications to families of contractions associated to higher-rank graphs. Indiana Univ. Math. J. 58(5), 2227–2252 (2009)

    Article  MathSciNet  Google Scholar 

  29. Skalski, A., Zacharias, J.: Wold decomposition for representations of product systems of \(C^*\)-correspondences. Int. J. Math. 19(4), 455–479 (2008)

    Article  MathSciNet  Google Scholar 

  30. Słociński, M.: On the Wold-type decomposition of a pair of commuting isometries. Ann. Polon. Math. 37(3), 255–262 (1980)

    Article  MathSciNet  Google Scholar 

  31. Solel, B.: Representations of product systems over semigroups and dilations of commuting CP maps. J. Funct. Anal. 180(2), 593–618 (2006)

    Article  MathSciNet  Google Scholar 

  32. Solel, B.: Regular dilations of representations of product systems. Math. Proc. R. Ir. Acad. 180(1), 89–110 (2008)

    Article  MathSciNet  Google Scholar 

  33. Trivedi, H., Veerabathiran, S.: Wold decomposition for Doubly commuting isometric covariant representations of product systems (2019). Preprint, arXiv:1903.07867

  34. Viselter, A.: Covariant representations of subproduct systems. Proc. Lond. Math. Soc. (3) 102(4), 767–800 (2011)

    Article  MathSciNet  Google Scholar 

  35. Wold, H.: A Study in the Analysis of Stationary Time Series. Almquist and Wiksell, Uppsala (1938)

    MATH  Google Scholar 

Download references

Acknowledgements

Shankar V. is grateful to The LNM Institute of Information Technology for providing research facility and warm hospitality during a visit in March 2019. Shankar V. is supported by CSIR Fellowship (File No: 09/115(0782)/2017-EMR-I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harsh Trivedi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trivedi, H., Veerabathiran, S. Generating Wandering Subspaces for Doubly Commuting Covariant Representations. Integr. Equ. Oper. Theory 91, 35 (2019). https://doi.org/10.1007/s00020-019-2533-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00020-019-2533-3

Keywords

Mathematics Subject Classification

Navigation