Skip to main content
Log in

Existence of mild solutions to Hilfer fractional evolution equations in Banach space

  • Original Paper
  • Published:
Annals of Functional Analysis Aims and scope Submit manuscript

Abstract

In this paper, we investigate the existence of mild solutions to semilinear evolution fractional differential equations with non-instantaneous impulses, using the concepts of equicontinuous \((\alpha ,\beta )\)-resolvent operator function \({\mathbb {P}}_{\alpha ,\beta }(t)\) and Kuratowski measure of non-compactness in Banach space \(\varOmega\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banaś, J.: On measures of noncompactness in Banach spaces. Comment. Math. Univ. Carolin. 21(1), 131–143 (1980)

    MathSciNet  MATH  Google Scholar 

  2. Benchohra, M., Henderson, J., Ntouyas, S.: Impulsive Differential Equations and Inclusions, vol. 2. Hindawi Publishing Corporation, New York (2006)

    Book  MATH  Google Scholar 

  3. Cardinali, T., Rubbioni, T.: Mild solutions for impulsive semilinear evolution differential inclusions. J. Appl. Funct. Anal. 1(3), 303–325 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Chauhan, A., Dabas, J.: Existence of mild solutions for impulsive fractional order semilinear evolution equations with nonlocal conditions. Electron. J. Differ. Equ. 2011(107), 1–10 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Chen, C., Li, M.: On fractional resolvent operator functions. Semigroup Forum 80, 121–142 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, P., Li, Y.: Mixed monotone iterative technique for a class of semilinear impulsive evolution equations in Banach space. Nonlinear Anal. Theory Methods Appl. 74(11), 3578–3588 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, P., Zhang, X., Li, Y.: Existence of mild solutions to partial differential equations with non-instantaneous impulses. Electron. J. Differ. Equ. 241, 1–11 (2016)

    MathSciNet  Google Scholar 

  8. Chen, P., Zhang, X., Li, Y.: Iterative method for a new class of evolution equations with non-instantaneous impulses. Taiwan. J. Math. 21(4), 913–942 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. de Oliveira, E.C., Tenreiro Machado, J.A.: A review of definitions for fractional derivatives and integral. Math. Probl. Eng. 2014, 238459 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. de Oliveira, E.C., Sousa, J.V.C.: Ulam–Hyers–Rassias stability for a class of fractional integro-differential equations. Results Math. 73(3), 111 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Debbouche, A., Baleanu, D.: Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems. Comput. Math. Appl. 62(3), 1442–1450 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fu, X., Huang, R.: Existence of solutions for neutral integro-differential equations with state-dependent delay. Appl. Math. Comput. 224, 743–759 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Gou, H., Li, B.: Local and global existence of mild solution to impulsive fractional semilinear integro-differential equation with noncompact semigroup. Commun. Nonlinear Sci. Numer. Simul. 42, 204–214 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gu, H., Trujillo, J.J.: Existence of mild solution for evolution equation with Hilfer fractional derivative. Appl. Math. Comput. 257, 344–354 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Haoa, X., Liub, L., Wuc, Y.: Mild solutions of impulsive semilinear neutral evolution equations in Banach spaces. J. Nonlinear Sci. Appl. 9(12), 6183–6194 (2016)

    Article  MathSciNet  Google Scholar 

  16. Hernández, E., O’Regan, D.: On a new class of abstract impulsive differential equations. Proc. Am. Math. Soc. 141(5), 1641–1649 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier, Amsterdam (2006)

    Book  MATH  Google Scholar 

  18. Lakshmikantham, V., Simeonov, P.S.: Theory of Impulsive Differential Equations, vol. 6. World Scientific, Singapore (1989)

    Book  MATH  Google Scholar 

  19. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: an Introduction to Mathematical Models. Imperial College Press, London (2010)

    Book  MATH  Google Scholar 

  20. Mu, J.: Extremal mild solutions for impulsive fractional evolution equations with nonlocal initial conditions. Bound. Value Probl. 2012(1), 71 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pierri, M., O’Regan, D., Rolnik, V.: Existence of solutions for semi-linear abstract differential equations with not instantaneous impulses. Appl. Math. Comput. 219(12), 6743–6749 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Ravichandran, C., Baleanu, D.: On the controllability of fractional functional integro-differential systems with an infinite delay in Banach spaces. Adv. Differ. Equ. 2013(1), 291 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sabatier, M.J., Agrawal, O.P., Machado, J.A.T.: Advances in Fractional Calculus, vol. 4. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  24. Samoilenko, A.M., Perestyuk, N.A.: Impulsive Differential Equations. World Scientific, Singapore (1995)

    Book  MATH  Google Scholar 

  25. Sousa, J.V.C., de Oliveira, E.C., Magna, L.A.: Fractional calculus and the ESR test. AIMS Math. 2, 692–705 (2017)

    Article  MATH  Google Scholar 

  26. Sousa, J.V.C., de Oliveira, E.C.: On the $\psi $-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 60, 72–91 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sousa, J.V.C., dos Santos, M.N.N., Magna, L.A., de Oliveira, E.C.: Validation of a fractional model for erythrocyte sedimentation rate. Comput. Appl. Math. 1–17 (2018)

  28. Sousa, J.V.C., de Oliveira, E.C.: On a $\psi $-fractional integral and applications. Comput. Appl. Math. 38, 4 (2019). https://doi.org/10.1007/s40314-019-0774-z

    Article  MathSciNet  MATH  Google Scholar 

  29. Sousa, J.V.C., de Oliveira, E.C.: Ulam–Hyers stability of a nonlinear fractional Volterra integro-differential equation. Appl. Math. Lett. 81, 50–56 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sousa, J.V.C., de Oliveira, E.C.: On the Ulam–Hyers–Rassias stability for nonlinear fractional differential equations using the $\psi $-Hilfer operator. J. Fixed Point Theory Appl. 20(3), 96 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sousa, J.V.C., de Oliveira, E.C.: Fractional order pseudoparabolic partial differential equation: Ulam-Hyers stability. Bull. Braz. Math. Soc. NewSer. 50, 481–496 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sousa, J.V.C., de Oliveira, E.C.: On the stability of a hyperbolic fractional partial differential equation. Differ. Equ. Dyn. Syst. (2019). https://doi.org/10.1007/s12591-019-00499-3

    Article  Google Scholar 

  33. Sousa, J.V.C., Kucche, K.D., de Oliveira, E.C.: Stability of $\psi $-Hilfer impulsive fractional differential equations. Appl. Math. Lett. 88, 73–80 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sousa, J.V.C., Oliveira, D.S., de Oliveira, E.C.: A note on the mild solutions of Hilfer impulsive fractional differential equations. arXiv:1811.09256

  35. Sousa, J.V.C., de Oliveira, E.C.: Leibniz type rule: $\psi -$Hilfer fractional operator. Commun. Nonlinear Sci. Numer. Simul. 77, 305–311 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, J., Zhou, Y.: Existence and controllability results for fractional semilinear differential inclusions. Nonlinear Anal. Real World Appl. 12(6), 3642–3653 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yang, M., Wang, Q.: Existence of mild solutions for a class of Hilfer fractional evolution equations with nonlocal conditions. Fract. Calc. Appl. Anal. 20(3), 679–705 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang, Z., Liu, B.: Existence of mild solutions for fractional evolutions equations. J. Fract. Calc. 10, 1–10 (2012)

    Google Scholar 

  39. Zhou, Y.: Attractivity for fractional evolution equations with almost sectorial operators. Fract. Calc. Appl. Anal. 21(3), 786–800 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Prof. Dr. E. Capelas de Oliveira for fruitful discussions for suggesting several references on the subject, and we are grateful to the anonymous referees for the suggestions that improved the manuscript. J. Vanterler acknowledges the financial support of a PNPDCAPES (process number no. 88882.305834/2018-01) scholarship of the Postgraduate Program in Applied Mathematics of IMECC-Unicamp.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Vanterler da C. Sousa.

Additional information

Communicated by Feng Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sousa, J.V.d.C., Jarad, F. & Abdeljawad, T. Existence of mild solutions to Hilfer fractional evolution equations in Banach space. Ann. Funct. Anal. 12, 12 (2021). https://doi.org/10.1007/s43034-020-00095-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43034-020-00095-5

Keywords

Mathematics Subject Classification

Navigation