Skip to main content
Log in

Mutational Landscape Screening Through Comprehensive In Silico Analysis for Polycystic Ovarian Syndrome–Related Genes

  • Genetics: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Polycystic ovary syndrome (PCOS) is a multifactorial endocrinopathy of indistinguishable etiopathogenesis that is liable to entail genetic and environmental machinery synergistically interacting with its phenotypic expression. It has been hypothesized that the environment secondarily interacts with genes to define the quantifiable phenotype in a primary, genetically determined, hyper-androgenic ovarian defect. The severity and prevalence of the disease are escalating due to uncontrolled diet and lifestyle, the influence of multiple environmental factors as well as genetic disorders. Many candidate genes have been identified to be one of the causes of PCOS. Different studies have been carried out to find the genetic correlation of PCOS. The mutational landscape analysis scans the entire genes for SNPs which usually occurs more frequently in patients and not in healthy individuals. In this study, an extensive computational analysis of all reported nsSNPs of the 27 selected PCOS-related genes was performed to infer the most pathogenic forms associated with PCOS. As a result, 28 genetic variants from 11 genes were predicted to be most harmful. Results of the present study can be useful for building an integrative genotype–phenotype database for further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, …, Sunyaev SR. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4)248-249.https://doi.org/10.1038/nmeth0410-248.

  2. Ajmal N, Khan SZ, Shaikh R. Polycystic ovary syndrome (PCOS) and genetic predisposition: a review article. Eur J Obstet Gynecol Reprod Biol. 2019;3:100060. https://doi.org/10.1016/j.eurox.2019.100060.

    Article  CAS  Google Scholar 

  3. Akgül S, Derman O, Alikaşifoğlu M, Aktaş D. CYP1A1 polymorphism in adolescents with polycystic ovary syndrome. Int J Gynecol Obstet. 2011;112(1):8–10. https://doi.org/10.1016/j.ijgo.2010.07.032.

    Article  CAS  Google Scholar 

  4. Baba T, Endo T, Sata F, Honnma H, Kitajima Y, Hayashi T, …, Saito T. Polycystic ovary syndrome is associated with genetic polymorphism in the insulin signaling gene IRS-1 but not ENPP1 in a Japanese population. Life Sci. 2007;81(10)850-854.https://doi.org/10.1016/j.lfs.2007.07.023.

  5. Bendl J, Stourac J, Salanda O, Pavelka A, Wieben ED, Zendulka J, …, Damborsky J. PredictSNP: robust and accurate consensus classifier for prediction of disease-related mutations. PLoS Comput Biol. 2014;10(1)e1003440.https://doi.org/10.1371/journal.pcbi.1003440.

  6. Branavan U, Muneeswaran K, Wijesundera S, Jayakody S, Chandrasekharan V, Wijeyaratne C. Identification of selected genetic polymorphisms in polycystic ovary syndrome in Sri Lankan women using low cost genotyping techniques. PLoS One. 2018;13(12):e0209830. https://doi.org/10.1371/journal.pone.0209830.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Capriotti E, Fariselli P, Casadio R. I-Mutant20: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res. 2005;33(Web Server):W306–10. https://doi.org/10.1093/nar/gki375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chatterjee M, Bandyopadhyay S. Assessment of the prevalence of polycystic ovary syndrome among the college students: a case–control study from Kolkata. J Mahatma Gandhi Inst Med Sci. 2020;25(1):28. https://doi.org/10.4103/jmgims.jmgims_62_19.

    Article  Google Scholar 

  9. Choi Y, Chan AP. PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics. 2015;31(16):2745–7. https://doi.org/10.1093/bioinformatics/btv195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cui L, Li G, Zhong W, Bian Y, Su S, Sheng Y, …, Chen Z-J. Polycystic ovary syndrome susceptibility single nucleotide polymorphisms in women with a single PCOS clinical feature. Hum Reprod. 2015;30(3)732-736.https://doi.org/10.1093/humrep/deu361.

  11. Dadachanji R, Shaikh N, Mukherjee S. Genetic variants associated with hyperandrogenemia in PCOS pathophysiology. Genet Res Int. 2018;2018.https://doi.org/10.1155/2018/7624932.

  12. Dakshinamoorthy J, Jain PR, Ramamoorthy T, Ayyappan R, Balasundaram U. Association of GWAS identified INSR variants (rs2059807 & rs1799817) with polycystic ovarian syndrome in Indian women. Int J Biol Macromol. 2020;144:663–70. https://doi.org/10.1016/j.ijbiomac.2019.10.235.

    Article  CAS  PubMed  Google Scholar 

  13. Devang N, Satyamoorthy K, Rai PS, Nandini M, Basu A, Adhikari P. Association of HSD11B1 rs12086634 and HSD11B1 rs846910 gene polymorphisms with polycystic ovary syndrome in South Indian women. Int J Diabetes Dev Countries. 2018;38(4):381–6. https://doi.org/10.1007/s13410-017-0596-8.

    Article  CAS  Google Scholar 

  14. Ding T, Hardiman PJ, Petersen I, Wang F-F, Qu F, Baio G. The prevalence of polycystic ovary syndrome in reproductive-aged women of different ethnicity: a systematic review and meta-analysis. Oncotarget. 2017;8(56):96351–8. https://doi.org/10.18632/oncotarget.19180.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Du J, Wang Z, Zhang J, Jia L, Zhang F, Shi Y, Chen Z. Association between single nucleotide polymorphism of rs2252673 of INSR gene and polycystic ovarian syndrome. Zhonghua Fu Chan Ke Za Zhi. 2014;49(12):919–24. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/25608993.

    CAS  PubMed  Google Scholar 

  16. El-Shal AS, Zidan HE, Rashad NM, Abdelaziz AM, Harira MM. Association between genes encoding components of the Leutinizing hormone/Luteinizing hormone-choriogonadotrophin receptor pathway and polycystic ovary syndrome in Egyptian women. IUBMB Life. 2016;68(1):23–36. https://doi.org/10.1002/iub.1457.

    Article  CAS  PubMed  Google Scholar 

  17. El Mkadem SA, Lautier C, Macari F, Molinari N, Lefebvre P, Renard E, …, Grigorescu F. Role of allelic variants Gly972Arg of IRS-1 and Gly1057Asp of IRS-2 in moderate-to-severe insulin resistance of women with polycystic ovary syndrome. Diabetes. 2001;50(9)2164–2168.https://doi.org/10.2337/diabetes.50.9.2164.

  18. Escobar-Morreale HF. Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nat Rev Endocrinol. 2018;14(5):270–84. https://doi.org/10.1038/nrendo.2018.24.

    Article  PubMed  Google Scholar 

  19. Feng W, Zhang Y, Pan Y, Zhang Y, Liu M, Huang Y, …, Ma Y. Association of three missense mutations in the homocysteine-related MTHFR and MTRR gene with risk of polycystic ovary syndrome in Southern Chinese women.Reprod Biol Endocrinol. 2021;19(1)5.https://doi.org/10.1186/s12958-020-00688-8.

  20. Fernández-Cancio M, García-García E, González-Cejudo C, Martínez-Maestre M-A, Mangas-Cruz M-A, Guerra-Junior G, …, Carrascosa A. Discordant genotypic sex and phenotype variations in two Spanish siblings with 17α-hydroxylase/17,20-lyase deficiency carrying the most prevalent mutated CYP17A1 alleles of Brazilian patients. Sex Dev. 2017;11(2)70–77.https://doi.org/10.1159/000468160.

  21. Gambineri A, Tomassoni F, Munarini A, Stimson RH, Mioni R, Pagotto U, …, Walker BR. A combination of polymorphisms in HSD11B1 associates with in vivo 11β-HSD1 activity and metabolic syndrome in women with and without polycystic ovary syndrome. Eur J Endocrinol. 2011;165(2)283–292.https://doi.org/10.1530/EJE-11-0091.

  22. Ganie M, Vasudevan V, Wani I, Baba M, Arif T, Rashid A. Epidemiology, pathogenesis, genetics & management of polycystic ovary syndrome in India. Indian J Med Res. 2019;150(4):333. https://doi.org/10.4103/ijmr.IJMR_1937_17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gonzalez A, Abril E, Roca A, Aragón MJ, Figueroa MJ, Velarde P, …, Ruiz A. CAPN10 Alleles are associated with polycystic ovary syndrome. J Clin Endocrinol Metab. 2002;87(8)3971–3976.https://doi.org/10.1210/jcem.87.8.8793

  24. Goursaud C, Mallet D, Janin A, Menassa R, Tardy-Guidollet V, Russo G, …, Roucher-Boulez F. Aberrant splicing is the pathogenicity mechanism of the p.Glu314Lys variant in CYP11A1 gene. Front Endocrinol. 2018;9. https://doi.org/10.3389/fendo.2018.00491.

  25. Haddad L, Evans JC, Gharani N, Robertson C, Rush K, Wiltshire S, …, McCarthy MI. Variation within the type 2 diabetes susceptibility gene calpain-10 and polycystic ovary syndrome. J Clin Endocrinol Metab. 2002;87(6)2606-2610.https://doi.org/10.1210/jcem.87.6.8608.

  26. Han R, Gong X, Zhu Y, Liu X, Xia Y, Huang Y, …, Ding J. Relationship of PD-1 (PDCD1) and PD-L1 (CD274) Single nucleotide polymorphisms with polycystic ovary syndrome.Biomed Res Int. 2021;2021:1-9.https://doi.org/10.1155/2021/9596358.

  27. Jamshidi M, Mohammadi Pour S, Bahadoram M, Mahmoudian-Sani M, Saeedi Boroujeni A. Genetic polymorphisms associated with polycystic ovary syndrome among Iranian women. Int J Gynecol Obstet. 2021;153(1):33–44. https://doi.org/10.1002/ijgo.13534.

    Article  CAS  Google Scholar 

  28. Jiao X, Chen W, Zhang J, Wang W, Song J, Chen D, …, Yu X. Variant alleles of the ESR1, PPARG, HMGA2, and MTHFR genes are associated with polycystic ovary syndrome risk in a Chinese population: a case-control study. Front Endocrinol. 2018;9.https://doi.org/10.3389/fendo.2018.00504.

  29. Kardelen AD, Toksoy G, Baş F, Yavaş Abalı Z, Gençay G, Poyrazoğlu Ş, …, Darendeliler F. A rare cause of congenital adrenal hyperplasia: clinical and genetic findings and follow-up characteristics of six patients with 17-hydroxylase deficiency including two novel mutations. J Clin Res Pediatr Endocrinol. 2018;10(3)206-215.https://doi.org/10.4274/jcrpe.0032.

  30. Kim CJ, Lin L, Huang N, Quigley CA, AvRuskin TW, Achermann JC, Miller WL. Severe combined adrenal and gonadal deficiency caused by novel mutations in the cholesterol side chain cleavage enzyme, P450scc. J Clin Endocrinol Metab. 2008;93(3):696–702. https://doi.org/10.1210/jc.2007-2330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kleinendorst L, Abawi O, van der Kamp HJ, Alders M, Meijers-Heijboer HEJ, van Rossum EFC, …, van Haelst MM. Leptin receptor deficiency: a systematic literature review and prevalence estimation based on population genetics. Eur J Endocrinol. 2020;182(1)47-56.https://doi.org/10.1530/EJE-19-0678.

  32. Kshetrimayum C, Sharma A, Mishra VV, Kumar S. Polycystic ovarian syndrome: environmental/occupational, lifestyle factors; an overview. J Turk Ger Gynecol Assoc. 2019;20(4):255–63. https://doi.org/10.4274/jtgga.galenos.2019.2018.0142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee E-J, Oh B, Lee J-Y, Kimm K, Lee S-H, Baek K-H. A novel single nucleotide polymorphism of INSR gene for polycystic ovary syndrome. Fertil Steril. 2008;89(5):1213–20. https://doi.org/10.1016/j.fertnstert.2007.05.026.

    Article  CAS  PubMed  Google Scholar 

  34. Lee H, Oh J-Y, Sung Y-A, Chung H, Kim H-L, Kim GS, …, Kim JT. Genome-wide association study identified new susceptibility loci for polycystic ovary syndrome. Hum Reprod. 2015;30(3)723-731.https://doi.org/10.1093/humrep/deu352.

  35. López-Ferrando V, Gazzo A, de la Cruz X, Orozco M, Gelpí JL. PMut: a web-based tool for the annotation of pathological variants on proteins, 2017 update. Nucleic Acids Res. 2017;45(W1):W222–8. https://doi.org/10.1093/nar/gkx313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Madelaine R, Notwell JH, Skariah G, Halluin C, Chen CC, Bejerano G, Mourrain P. A screen for deeply conserved non-coding GWAS SNPs uncovers a MIR-9-2 functional mutation associated to retinal vasculature defects in human. Nucleic Acids Res. 2018;46(7):3517–31. https://doi.org/10.1093/nar/gky166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mehdizadeh A, Kalantar SM, Sheikhha MH, Aali BS, Ghanei A. Association of SNP rs.2414096 CYP19 gene with polycystic ovarian syndrome in Iranian women. Int J Reprod Biomed. 2017;15(8):491–6. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/29082367.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Munawar Lone N, Babar S, Sultan S, Malik S, Nazeer K, Riaz S. Association of the CYP17 and CYP19 gene polymorphisms in women with polycystic ovary syndrome from Punjab, Pakistan. Gynecol Endocrinol. 2020:1–6.https://doi.org/10.1080/09513590.2020.1822803.

  39. Naseri R, Barzingarosi E, Sohrabi M, Alimoradi Y, CheraghianFard M, Jalili C. The effect of leptin receptor gene polymorphisms (R223Q and P1019P) in susceptibility to polycystic ovarian syndrome in Kurdish women. Int J Fertil Steril. 2021;15(2):123–7. https://doi.org/10.22074/IJFS.2021.6197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ng PC. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31(13):3812–4. https://doi.org/10.1093/nar/gkg509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nidhi R, Padmalatha V, Nagarathna R, Amritanshu R. Prevalence of polycystic ovarian syndrome in Indian adolescents. J Pediatr Adolesc Gynecol. 2011;24(4):223–7. https://doi.org/10.1016/j.jpag.2011.03.002.

    Article  PubMed  Google Scholar 

  42. Okoroh EM, Hooper WC, Atrash HK, Yusuf HR, Boulet SL. Prevalence of polycystic ovary syndrome among the privately insured, United States, 2003–2008. Am J Obstet Gynecol. 2012;207(4):299.e1-299.e7. https://doi.org/10.1016/j.ajog.2012.07.023.

    Article  Google Scholar 

  43. Pandurangan AP, Ochoa-Montaño B, Ascher DB, Blundell TL. SDM: a server for predicting effects of mutations on protein stability. Nucleic Acids Res. 2017;45(W1):W229–35. https://doi.org/10.1093/nar/gkx439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pejaver V, Urresti J, Lugo-Martinez J, Pagel KA, Lin GN, Nam H-J, …, Radivojac P.Inferring the molecular and phenotypic impact of amino acid variants with MutPred2.Nat Commun. 2020;11(1)5918.https://doi.org/10.1038/s41467-020-19669-x.

  45. Pires DEV, Ascher DB, Blundell TL. DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Res. 2014;42(W1):W314–9. https://doi.org/10.1093/nar/gku411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pires DEV, Ascher DB, Blundell TL. mCSM: predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics. 2014;30(3):335–42. https://doi.org/10.1093/bioinformatics/btt691.

    Article  CAS  PubMed  Google Scholar 

  47. Prabhu BN, Kanchamreddy SH, Sharma AR, Bhat SK, Bhat PV, Kabekkodu SP, …, Rai PS. Conceptualization of functional single nucleotide polymorphisms of polycystic ovarian syndrome genes: an in silico approach. J Endocrinol Invest. 2021.https://doi.org/10.1007/s40618-021-01498-4.

  48. Prapas N, Karkanaki A, Prapas I, Kalogiannidis I, Katsikis I, Panidis D. Genetics of polycystic ovary syndrome. Hippokratia. 2009;13(4):216–23. https://doi.org/10.1016/s1472-6483(11)60572-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Raperport C, Homburg R. The source of polycystic ovarian syndrome. Clin Med Insights Reprod Health. 2019;13:117955811987146. https://doi.org/10.1177/1179558119871467.

    Article  Google Scholar 

  50. Rizk NM, Sharif E. Leptin as well as free leptin receptor is associated with polycystic ovary syndrome in young women. Int J Endocrinol. 2015;2015:1–10. https://doi.org/10.1155/2015/927805.

    Article  Google Scholar 

  51. Robeva R, Andonova S, Tomova A, Kumanov P, Savov A. LHCG receptor polymorphisms in PCOS patients. Biotechnol Biotechnol Equip. 2018;32(2):427–32. https://doi.org/10.1080/13102818.2017.1423246.

    Article  CAS  Google Scholar 

  52. Rodrigues CH, Pires DE, Ascher DB. DynaMut: predicting the impact of mutations on protein conformation, flexibility and stability. Nucleic Acids Res. 2018;46(W1):W350–5. https://doi.org/10.1093/nar/gky300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schwede T. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res. 2003;31(13):3381–5. https://doi.org/10.1093/nar/gkg520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. SelviArumugaNainar AT, Loganathan M. PCOS: a raising problem; due to recent trends. Int J Reprod Contracept Obstet Gynecol. 2017;6(5):1762. https://doi.org/10.18203/2320-1770.ijrcog20171527.

    Article  Google Scholar 

  55. Shen W, Li T, Hu Y, Liu H, Song M. CYP1A1 gene polymorphisms and polycystic ovary syndrome risk: a meta-analysis and meta-regression. Genet Test Mol Biomarkers. 2013;17(10):727–35. https://doi.org/10.1089/gtmb.2013.0209.

    Article  CAS  PubMed  Google Scholar 

  56. Tang H, Thomas PD. PANTHER-PSEP: predicting disease-causing genetic variants using position-specific evolutionary preservation. Bioinformatics. 2016;32(14):2230–2. https://doi.org/10.1093/bioinformatics/btw222.

    Article  CAS  PubMed  Google Scholar 

  57. Tang W, Wang Y, Jiang H, Liu C, Dong C, Chen S, …, Gu H. Insulin receptor substrate-1 (IRS-1) rs1801278G>A polymorphism is associated with polycystic ovary syndrome susceptibility: a meta-analysis. Int J Clin Exp Med. 2015;8(10)17451–17460. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/26770335.

  58. Thangavelu M, Godla UR, Paul SFD, Maddaly R. Single-nucleotide polymorphism of INS, INSR, IRS1, IRS2, PPAR-G and CAPN10 genes in the pathogenesis of polycystic ovary syndrome. J Genet. 2017;96(1):87–96. https://doi.org/10.1007/s12041-017-0749-z.

    Article  CAS  PubMed  Google Scholar 

  59. Tian L, Zou Y, Tan J, Wang Y, Chen J, Xia L, …, Huang O. Androgen receptor gene mutations in 258 Han Chinese patients with polycystic ovary syndrome. Exp Ther Med. 2020;21(1)1.https://doi.org/10.3892/etm.2020.9463.

  60. Turner MD, Cassell PG, Hitman GA. Calpain-10: from genome search to function. Diabetes Metab Res Rev. 2005;21(6):505–14. https://doi.org/10.1002/dmrr.578.

    Article  CAS  PubMed  Google Scholar 

  61. Ünal E, Yıldırım R, Taş FF, Demir V, Onay H, Haspolat YK. Aromatase deficiency due to a novel mutation in CYP19A1 Gene. J Clin Res Pediatr Endocrinol. 2018. https://doi.org/10.4274/jcrpe.0011.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Unluturk U, Harmanci A, Kocaefe C, Yildiz BO. The genetic basis of the polycystic ovary syndrome: a literature review including discussion of PPAR - γ. PPAR Res. 2007;2007:1–23. https://doi.org/10.1155/2007/49109.

    Article  CAS  Google Scholar 

  63. Venselaar H, te Beek TA, Kuipers RK, Hekkelman ML, Vriend G. Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinformatics. 2010;11(1):548. https://doi.org/10.1186/1471-2105-11-548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vidya Bharathi R, Swetha S, Neerajaa J, Varsha Madhavica J, Janani DM, Rekha SN, …, Usha B. An epidemiological survey: effect of predisposing factors for PCOS in Indian urban and rural population. Middle East Fertil Soc J. 2017;22(4)313–316.https://doi.org/10.1016/j.mefs.2017.05.007.

  65. Wolf W, Wattick R, Kinkade O, Olfert M. Geographical prevalence of polycystic ovary syndrome as determined by region and race/ethnicity. Int J Environ Res Public Health. 2018;15(11):2589. https://doi.org/10.3390/ijerph15112589.

    Article  PubMed Central  Google Scholar 

  66. Wu X, Xu S, Liu J, Bi X, Wu Y, Liu J. Association between FSHR polymorphisms and polycystic ovary syndrome among Chinese women in north China. J Assist Reprod Genet. 2014;31(3):371–7. https://doi.org/10.1007/s10815-013-0166-z.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Yates CM, Sternberg MJE. The effects of non-synonymous single nucleotide polymorphisms (nsSNPs) on protein–protein interactions. J Mol Biol. 2013;425(21):3949–63. https://doi.org/10.1016/j.jmb.2013.07.012.

    Article  CAS  PubMed  Google Scholar 

  68. Ye Y, Cheng X, Luo H-B, Liu L, Li Y-B, Hou Y-P. CYP1A1 and CYP1B1 genetic polymorphisms and uterine leiomyoma risk in Chinese women. J Assist Reprod Genet. 2008;25(8):389–94. https://doi.org/10.1007/s10815-008-9246-x.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zabeau L, Defeau D, Iserentant H, Vandekerckhove J, Peelman F, Tavernier J. Leptin receptor activation depends on critical cysteine residues in its fibronectin type III subdomains. J Biol Chem. 2005;280(24):22632–40. https://doi.org/10.1074/jbc.M413308200.

    Article  CAS  PubMed  Google Scholar 

  70. Zhang F, Lupski JR. Non-coding genetic variants in human disease: Figure 1. Hum Mol Genet. 2015;24(R1):R102–10. https://doi.org/10.1093/hmg/ddv259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SD: Study design, Data analysis, Manuscript writing; SM: Data mining, Data analysis, Manuscript writing; PB: Study design, Manuscript editing & Supervision of the experiment.

Corresponding author

Correspondence to Pritha Bhattacharjee.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhar, S., Mridha, S. & Bhattacharjee, P. Mutational Landscape Screening Through Comprehensive In Silico Analysis for Polycystic Ovarian Syndrome–Related Genes. Reprod. Sci. 29, 480–496 (2022). https://doi.org/10.1007/s43032-021-00752-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-021-00752-7

Keywords

Navigation