Skip to main content
Log in

Association study to evaluate Foxo1 and Foxo3 gene polymorphisms in polycystic ovary syndrome: a preliminary case–control study and in silico analysis

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Polycystic ovary syndrome (PCOS) is known as a multifactorial and multi-gene-mediated endocrine disorder among women of reproductive age. FoxO1 and FoxO3 are members of the forkhead transcriptional factors family that play a pivotal role in the function of ovaries. The current work is aimed at investigating the association between gene variants of FoxO1 and FoxO3 and the risk of PCOS in a sample of the Iranian population.

Methods and results

We recruited 200 women diagnosed with PCOS and 200 healthy women. Both polymerase PCR–RFLP and ARMS-PCR methods were used for genotyping. Sanger sequencing was recruited to confirm the genotyping results. The T allele of rs17592236 and the C allele of rs12585277 decreased PCOS risk by 29 and 28%, respectively. In contrast, the C allele of rs2253310 and G allele of rs2802292 increased the risk of PCOS by 1.39 and 1.63 folds, correspondingly. Bioinformatics results showed that some genes, including matrix metallopeptidase 9 (MMP-9), phosphoinositide-3-Kinase Regulatory Subunit 224 1 (PIK3R1), peroxisome proliferator-activated receptor Gamma (PPARG), and glycogen synthase 225 kinase-3 beta (GSK-3 beta) have significant interactions with FoxO1, suggesting that FoxO1 might have crucial roles in regulating different signaling pathways in ovarian cells.

Conclusion

We found that FoxO1 rs17592236C > T and rs12585277C > T had a protective role against PCOS, while FoxO3 rs2253310C > G and rs2802292G > T  enhanced the risk of this metabolic disorder in our population. Additional studies on larger populations with varying races are needed to confirm these findings.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data in this manuscript are available from the corresponding author upon reasonable request.

References

  1. Pal L, Pathy S (2019) Polycystic ovarian syndrome. In: Norwitz ER, Zelop CM, Miller DA, Keefe DL (eds) Evidence-based obstetrics and gynecology. Wiley, Hoboken, pp 117–129

    Google Scholar 

  2. Muhas C et al (2021) An overview on polycystic ovary syndrome (PCOS). Technol Innov Pharm Res 6:19–30

    Google Scholar 

  3. Goodarzi MO et al (2011) Polycystic ovary syndrome: etiology, pathogenesis and diagnosis. Nat Rev Endocrinol 7(4):219–231

    Article  CAS  PubMed  Google Scholar 

  4. Hart R et al (2010) Serum antimullerian hormone (AMH) levels are elevated in adolescent girls with polycystic ovaries and the polycystic ovarian syndrome (PCOS). Fertil Steril 94(3):1118–1121

    Article  CAS  PubMed  Google Scholar 

  5. Eshre, R. and Group, A.-S.P.C.W (2004) Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod (Oxf, Engl) 19(1):41–47

    Article  Google Scholar 

  6. Azziz R et al (2006) Criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: an androgen excess society guideline. J Clin Endocrinol Metab 91(11):4237–4245

    Article  CAS  PubMed  Google Scholar 

  7. Wolf WM et al (2018) Geographical prevalence of polycystic ovary syndrome as determined by region and race/ethnicity. Int J Environ Res Public Health 15(11):2589

    Article  PubMed  PubMed Central  Google Scholar 

  8. Skiba MA et al (2018) Understanding variation in prevalence estimates of polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Update 24(6):694–709

    Article  PubMed  Google Scholar 

  9. Esmaeilzadeh S et al (2014) Polycystic ovary syndrome in Iranian adolescents. Int J Adolesc Med Health 26(4):559–565

    Article  PubMed  Google Scholar 

  10. Mani H et al (2015) Clinical characteristics of polycystic ovary syndrome: investigating differences in White and South Asian women. Clin Endocrinol 83(4):542–549

    Article  Google Scholar 

  11. Valgeirsdottir H et al (2021) Polycystic ovary syndrome and risk of stillbirth: a nationwide register-based study. BJOG 128(13):2073–2082

    Article  CAS  PubMed  Google Scholar 

  12. Osibogun O et al (2020) Polycystic ovary syndrome and cardiometabolic risk: opportunities for cardiovascular disease prevention. Trends Cardiovasc Med 30(7):399–404

    Article  PubMed  Google Scholar 

  13. Azziz R (2018) Polycystic ovary syndrome. Obstet Gynecol 132(2):321–336

    Article  PubMed  Google Scholar 

  14. Cooney LG, Dokras A (2017) Depression and anxiety in polycystic ovary syndrome: etiology and treatment. Curr Psychiatry Rep 19(11):1–10

    Article  Google Scholar 

  15. Chaudhary H et al (2021) The role of polymorphism in various potential genes on polycystic ovary syndrome susceptibility and pathogenesis. J Ovarian Res 14(1):1–21

    Article  CAS  Google Scholar 

  16. Moran LJ et al (2009) Treatment of obesity in polycystic ovary syndrome: a position statement of the Androgen Excess and Polycystic Ovary Syndrome Society. Fertil Steril 92(6):1966–1982

    Article  PubMed  Google Scholar 

  17. Vink J et al (2006) Heritability of polycystic ovary syndrome in a Dutch twin-family study. J Clin Endocrinol Metab 91(6):2100–2104

    Article  CAS  PubMed  Google Scholar 

  18. Mykhalchenko K et al (2017) Genetics of polycystic ovary syndrome. Expert Rev Mol Diagn 17(7):723–733

    Article  CAS  PubMed  Google Scholar 

  19. Karakaya C et al (2022) Further delineation of familial polycystic ovary syndrome (PCOS) via whole-exome sequencing: PCOS-related rare FBN3 and FN1 gene variants are identified. J Obstet Gynaecol Res 48(5):1202–1211

    Article  CAS  PubMed  Google Scholar 

  20. Xu R, Wang Z (2021) Involvement of transcription factor FoxO1 in the pathogenesis of polycystic ovary syndrome. Front Physiol 12:649295

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lee S, Dong HH (2017) FoxO integration of insulin signaling with glucose and lipid metabolism. J Endocrinol 233(2):R67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang Z et al (2016) Post-translational modifications of FOXO family proteins. Mol Med Rep 14(6):4931–4941

    Article  CAS  PubMed  Google Scholar 

  23. Vickers NJ (2017) Animal communication: when i’m calling you, will you answer too? Curr Biol 27(14):R713–R715

    Article  CAS  PubMed  Google Scholar 

  24. Gong Y et al (2020) Growth hormone activates PI3K/Akt signaling and inhibits ROS accumulation and apoptosis in granulosa cells of patients with polycystic ovary syndrome. Reprod Biol Endocrinol 18(1):1–12

    Article  Google Scholar 

  25. Obexer P et al (2007) FKHRL1-mediated expression of Noxa and Bim induces apoptosis via the mitochondria in neuroblastoma cells. Cell Death Differ 14(3):534–547

    Article  CAS  PubMed  Google Scholar 

  26. Mikaeili S et al (2016) Altered FoxO3 expression and apoptosis in granulosa cells of women with polycystic ovary syndrome. Arch Gynecol Obstet 294(1):185–192

    Article  CAS  PubMed  Google Scholar 

  27. ESHRE, T.R. and Group, A.-S.P.C.W (2004) Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril 81(1):19–25

    Article  Google Scholar 

  28. Ghasemi M et al (2020) An association study of polymorphisms in the H19 imprinted gene in an Iranian population with the risk of polycystic ovary syndrome. Biol Reprod 103(5):978–985

    Article  PubMed  Google Scholar 

  29. Nasiri H et al (2005) Modified salting-out method: high-yield, high-quality genomic DNA extraction from whole blood using laundry detergent. J Clin Lab Anal 19(6):229–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sharma M et al (2020) PCOSKBR2: a database of genes, diseases, pathways, and networks associated with polycystic ovary syndrome. Sci Rep 10(1):1–11

    Article  Google Scholar 

  31. Kanehisa M et al (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45(D1):D353–D361

    Article  CAS  PubMed  Google Scholar 

  32. Croft D et al (2010) Reactome: a database of reactions, pathways and biological processes. Nucl Acids Res 39(suppl_1):D691–D697

    PubMed  PubMed Central  Google Scholar 

  33. Shannon P et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Luddi A et al (2018) Matrix metalloproteinases and their inhibitors in human cumulus and granulosa cells as biomarkers for oocyte quality estimation. Fertil Steril 109(5):930-939 e933

    Article  CAS  PubMed  Google Scholar 

  35. Moss LAS et al (2012) Matrix metalloproteinases: changing roles in tumor progression and metastasis. Am J Pathol 181(6):1895–1899

    Article  CAS  Google Scholar 

  36. Dambala K et al (2019) Biomarkers of endothelial dysfunction in women with polycystic ovary syndrome. Angiology 70(9):797–801

    Article  CAS  PubMed  Google Scholar 

  37. Gomes VA et al (2011) Imbalanced circulating matrix metalloproteinases in polycystic ovary syndrome. Mol Cell Biochem 353(1):251–257

    Article  CAS  PubMed  Google Scholar 

  38. Goldman S, Shalev E (2004) MMPS and TIMPS in ovarian physiology and pathophysiology. Front Biosci 9(4):2474–2483

    Article  CAS  PubMed  Google Scholar 

  39. Kettunen P et al (2015) Genetic variants of GSK3B are associated with biomarkers for Alzheimer’s disease and cognitive function. J Alzheimers Dis 44(4):1313–1322

    Article  CAS  PubMed  Google Scholar 

  40. Schaffer BA et al (2008) Association of GSK3B with Alzheimer disease and frontotemporal dementia. Arch Neurol 65(10):1368–1374

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ismail AB et al (2022) The expression profile of WNT/β-catanin signalling genes in human oocytes obtained from polycystic ovarian syndrome (PCOS) patients. Zygote 30:1–7

    Article  Google Scholar 

  42. Chang W et al (2008) Adipocytes from women with polycystic ovary syndrome demonstrate altered phosphorylation and activity of glycogen synthase kinase 3. Fertil Steril 90(6):2291–2297

    Article  PubMed  PubMed Central  Google Scholar 

  43. Genin EC et al (2014) Concise review: forkhead pathway in the control of adult neurogenesis. Stem Cells 32(6):1398–1407

    Article  CAS  PubMed  Google Scholar 

  44. van der Vos KE, Coffer PJ (2011) The extending network of FOXO transcriptional target genes. Antioxid Redox Signal 14(4):579–592

    Article  PubMed  Google Scholar 

  45. Tamura H et al (2009) Melatonin and the ovary: physiological and pathophysiological implications. Fertil Steril 92(1):328–343

    Article  CAS  PubMed  Google Scholar 

  46. Castrillon DH et al (2003) Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science 301(5630):215–218

    Article  CAS  PubMed  Google Scholar 

  47. Muller Y, et al (2007) Functional variants in FOXO1A are associated with type 2 diabetes and obesity in pima Indians. Diabetes 56

  48. Li T et al (2011) Association analyses between the genetic polymorphisms of HNF4A and FOXO1 genes and Chinese Han patients with type 2 diabetes. Mol Cell Biochem 353(1):259–265

    Article  CAS  PubMed  Google Scholar 

  49. Hussain S et al (2021) No association between a genetic variant of FOXO3 and risk of type 2 diabetes mellitus in the elderly population of north India. Indian J Clin Biochem 36(3):330–336

    Article  CAS  PubMed  Google Scholar 

  50. Morris BJ et al (2016) Association analysis of FOXO3 longevity variants with blood pressure and essential hypertension. Am J Hypertens 29(11):1292–1300

    Article  CAS  PubMed  Google Scholar 

  51. Magno LAV et al (2011) Genetic variations in FOXO3A are associated with Bipolar Disorder without confering vulnerability for suicidal behavior. J Affect Disord 133(3):633–637

    Article  CAS  PubMed  Google Scholar 

  52. Wang S et al (2019) Micro-RNA-27a/b negatively regulates hepatic gluconeogenesis by targeting FOXO1. Am J Physiol-Endocrinol Metab 317(5):E911–E924

    Article  CAS  PubMed  Google Scholar 

  53. Yu H et al (2014) Predisposition to Behçet’s disease and VKH syndrome by genetic variants of miR-182. J Mol Med 92(9):961–967

    Article  CAS  PubMed  Google Scholar 

  54. Grossi V et al (2018) The longevity SNP rs2802292 uncovered: HSF1 activates stress-dependent expression of FOXO3 through an intronic enhancer. Nucleic Acids Res 46(11):5587–5600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bae H et al (2018) Effects of FOXO3 polymorphisms on survival to extreme longevity in four centenarian studies. J Gerontol Ser A 73(11):1439–1447

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the technical staff of the Cellular & Molecular Research Center, Zahedan University of Medical Sciences, for their support.

Funding

The current study received no funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, SS; Clinical assessments: MG; writing-original draft preparation, AR, MHN, MS-M and SS; writing-review and editing, SS, MHN; supervision, SS, RS. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Saman Sargazi.

Ethics declarations

Competing interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Ethical approval

The ethics committee of Mashhad University of Medical Sciences (Ethical code: IR.MUMS.REC.1400.375) approved the protocol of the current study.

Consent to publish

Not applicable.

Consent to participate

Informed consent was taken from all participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 620 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakhshani Nejad, A., Sargazi, S., Ghasemi, M. et al. Association study to evaluate Foxo1 and Foxo3 gene polymorphisms in polycystic ovary syndrome: a preliminary case–control study and in silico analysis. Mol Biol Rep 50, 3569–3580 (2023). https://doi.org/10.1007/s11033-023-08292-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08292-w

Keywords

Navigation