Skip to main content

Advertisement

Log in

Accompaniment of Time-Lapse Parameters and Cumulus Cell RNA-Sequencing in Embryo Evaluation

  • Reproductive Biology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

A Correction to this article was published on 06 December 2021

This article has been updated

Abstract

The aim of this study was to investigate the use of time-lapse morphokinetic parameters and cumulus cells transcriptomic profile to achieve a more accurate and non-invasive method in embryo evaluation. Two hundred embryos from 20 couples were evaluated based on morphokinetic characteristics using time-lapse. Embryos were divided into the high-quality, moderate-quality, and bad-quality groups. Non-fertilized oocytes were considered as the fourth group. T5 (time to five cells), S2 (time from three to four cells), and CC2 (time from two to three cells) were recorded. Also, the cumulus cells of the respective oocytes were divided into high-quality, moderate-quality, bad-quality, and non-fertilized groups based on the grading of the embryos. Then their transcriptomic profiles were analyzed by RNA-sequencing. Finally, the correlation between differentially expressed genes and embryo time-lapse parameters was investigated. T5 was the only timing that showed a statistically significant difference between high-quality group and other groups. RNA-sequencing results showed that 37 genes were downregulated and 106 genes were upregulated in moderate, bad-quality, and non-fertilized groups compared to high-quality group (q value < 0.05). These genes were involved in the main biological processes such as cell cycle, DNA repair, cell signaling and communication, transcription, and cell metabolism. Embryos graded in different groups showed different transcriptomic profiles in the related cumulus cells. Therefore, it seems that embryo selection using the combination of cytokinetics and cumulus cells gene expression can improve the accuracy of the embryo selection and pregnancy rate in ART clinics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code Availability

Not applicable.

Change history

  • 05 December 2021

    This article was updated to correct the affiliation of author Mehdi Mehdizadeh and to correct the Iran National Science Foundation grant number in the Funding section.

  • 06 December 2021

    A Correction to this paper has been published: https://doi.org/10.1007/s43032-021-00811-z

References

  1. Swain JE, Pool TB. ART failure: oocyte contributions to unsuccessful fertilization. Hum Reprod Update. 2008;14(5):431–46.

    Article  PubMed  Google Scholar 

  2. Keefe D, Kumar M, Kalmbach K. Oocyte competency is the key to embryo potential. Fertil Steril. 2015;103(2):317–22.

    Article  PubMed  Google Scholar 

  3. Krisher R. The effect of oocyte quality on development. J Anim Sci. 2004;82(suppl_13):E14–23.

    PubMed  Google Scholar 

  4. Anderson R, Sciorio R, Kinnell H, Bayne R, Thong K, De Sousa P, et al. Cumulus gene expression as a predictor of human oocyte fertilisation, embryo development and competence to establish a pregnancy. Reproduction. 2009;138(4):629–37.

    Article  CAS  PubMed  Google Scholar 

  5. Hammond ER, Stewart B, Peek JC, Shelling AN, Cree LM. Assessing embryo quality by combining non-invasive markers: early time-lapse parameters reflect gene expression in associated cumulus cells. Hum Reprod. 2015;30(8):1850–60.

    Article  CAS  PubMed  Google Scholar 

  6. Wathlet S, Adriaenssens T, Segers I, Verheyen G, Janssens R, Coucke W, et al. New candidate genes to predict pregnancy outcome in single embryo transfer cycles when using cumulus cell gene expression. Fertil Steril. 2012;98(2):432-9.e4.

    Article  CAS  PubMed  Google Scholar 

  7. Assou S, Haouzi D, De Vos J, Hamamah S. Human cumulus cells as biomarkers for embryo and pregnancy outcomes. MHR Basic Sci Reprod Med. 2010;16(8):531–8.

    Article  CAS  Google Scholar 

  8. Gebhardt KM, Feil DK, Dunning KR, Lane M, Russell DL. Human cumulus cell gene expression as a biomarker of pregnancy outcome after single embryo transfer. Fertil Steril. 2011;96(1):47-52.e2.

    Article  CAS  PubMed  Google Scholar 

  9. Sinkó I, Mórocz M, Zádori J, Kokavszky K, Raskó I. Effect of cigarette smoking on DNA damage of human cumulus cells analyzed by comet assay. Reprod Toxicol. 2005;20(1):65–71.

    Article  PubMed  CAS  Google Scholar 

  10. Scott R, Zhang M, Seli E. Metabolism of the oocyte and the preimplantation embryo: implications for assisted reproduction. Curr Opin Obstet Gynecol. 2018;30(3):163–70.

    Article  PubMed  Google Scholar 

  11. Prates E, Nunes J, Pereira R. A role of lipid metabolism during cumulus-oocyte complex maturation: impact of lipid modulators to improve embryo production. Mediators of inflammation. 2014;2014

  12. Anamika K, Verma S, Jere A, Desai A. Transcriptomic profiling using next generation sequencing-advances, advantages, and challenges. Next Gen Seq-Adv Appl Challeng. 2016;9:7355–65.

    Google Scholar 

  13. Chronowska E. High-throughput analysis of ovarian granulosa cell transcriptome. BioMed research international. 2014;2014

  14. Tong X-H, Xu B, Zhang Y-W, Liu Y-S, Ma C-H. Research resources: comparative microRNA profiles in human corona radiata cells and cumulus oophorus cells detected by next-generation small RNA sequencing. PLoS One. 2014;9(9)

  15. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kukurba KR, Montgomery SB. RNA sequencing and analysis. Cold Spring Harbor Prot. 2015;2015(11):pdb. top084970

  17. Ebner T, Höggerl A, Oppelt P, Radler E, Enzelsberger S-H, Mayer RB, et al. Time-lapse imaging provides further evidence that planar arrangement of blastomeres is highly abnormal. Arch Gynecol Obstet. 2017;296(6):1199–205.

    Article  PubMed  Google Scholar 

  18. Adolfsson E, Andershed AN. Morphology vs morphokinetics: a retrospective comparison of inter-observer and intra-observer agreement between embryologists on blastocysts with known implantation outcome. JBRA Assist Reprod. 2018;22(3):228.

    PubMed  PubMed Central  Google Scholar 

  19. Organization WH. WHO laboratory manual for the examination and processing of human semen. 2010

  20. Molinari E, Bar H, Pyle A, Patrizio P. Transcriptome analysis of human cumulus cells reveals hypoxia as the main determinant of follicular senescence. MHR: Basic Sci Reprod Med. 2016;22(8):866–76.

    CAS  Google Scholar 

  21. Mohammadi F, Varanloo N, Nasrabadi MH, Vatannejad A, Amjadi F, Masroor MJ, et al. Supplementation of sperm freezing medium with myoinositol improve human sperm parameters and protects it against DNA fragmentation and apoptosis. Cell Tissue Bank. 2019;20(1):77–86.

    Article  CAS  PubMed  Google Scholar 

  22. Gardner DK, Weissman A, Howles CM, Shoham Z. Textbook of assisted reproductive techniques: laboratory and clinical perspectives. CRC press; 2016

  23. Meseguer M, Herrero J, Tejera A, Hilligsøe KM, Ramsing NB, Remohí J. The use of morphokinetics as a predictor of embryo implantation. Hum Reprod. 2011;26(10):2658–71.

    Article  PubMed  Google Scholar 

  24. Basile N, Vime P, Florensa M, Aparicio Ruiz B, Garcia Velasco J, Remohi J, et al. The use of morphokinetics as a predictor of implantation: a multicentric study to define and validate an algorithm for embryo selection. Hum Reprod. 2015;30(2):276–83.

    Article  CAS  PubMed  Google Scholar 

  25. Gardner DK, Lane M, Stevens J, Schlenker T, Schoolcraft WB. Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil Steril. 2000;73(6):1155–8.

    Article  CAS  PubMed  Google Scholar 

  26. Liu Q, Zhang J, Wen H, Feng Y, Zhang X, Xiang H, et al. Analyzing the transcriptome profile of human cumulus cells related to embryo quality via RNA sequencing. BioMed Res Int. 2018;2018.

  27. Detwiler MR, Reuben M, Li X, Rogers E, Lin R. Two zinc finger proteins, OMA-1 and OMA-2, are redundantly required for oocyte maturation in C. elegans. Dev Cell. 2001;1(2):187–99.

    Article  CAS  PubMed  Google Scholar 

  28. Tang F, He Z, Lei H, Chen Y, Lu Z, Zeng G, et al. Identification of differentially expressed genes and biological pathways in bladder cancer. Mol Med Rep. 2018;17(5):6425–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhao C, Dahlman-Wright K. Liver X receptor in cholesterol metabolism. J Endocrinol. 2009;204(3):233–40.

    Article  PubMed  CAS  Google Scholar 

  30. Su Y-Q, Sugiura K, Wigglesworth K, O’Brien MJ, Affourtit JP, Pangas SA, et al. Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: BMP15 and GDF9 control cholesterol biosynthesis in cumulus cells. Development. 2008;135(1):111–21.

    Article  CAS  PubMed  Google Scholar 

  31. Comiskey M, Warner CM. Spatio-temporal localization of membrane lipid rafts in mouse oocytes and cleaving preimplantation embryos. Dev Biol. 2007;303(2):727–39.

    Article  CAS  PubMed  Google Scholar 

  32. Yang Y-J, Zhang Y-J, Li Y. Ultrastructure of human oocytes of different maturity stages and the alteration during in vitro maturation. Fertil Steril. 2009;92(1):396-e1–6.

    PubMed  Google Scholar 

  33. Høst E, Gabrielsen A, Lindenberg S, Smidt-Jensen S. Apoptosis in human cumulus cells in relation to zona pellucida thickness variation, maturation stage, and cleavage of the corresponding oocyte after intracytoplasmic sperm injection. Fertil Steril. 2002;77(3):511–5.

    Article  PubMed  Google Scholar 

  34. Corn CM, Hauser-Kronberger C, Moser M, Tews G, Ebner T. Predictive value of cumulus cell apoptosis with regard to blastocyst development of corresponding gametes. Fertil Steril. 2005;84(3):627–33.

    Article  PubMed  Google Scholar 

  35. Faramarzi A, Khalili MA, Jahromi MG. Is there any correlation between apoptotic genes expression in cumulus cells with embryo morphokinetics? Mol Biol Rep. 2019;46(4):3663–70.

    Article  CAS  PubMed  Google Scholar 

  36. Huang Z, Wells D. The human oocyte and cumulus cells relationship: new insights from the cumulus cell transcriptome. Mol Hum Reprod. 2010;16(10):715–25.

    Article  CAS  PubMed  Google Scholar 

  37. Kulus M, Sujka-Kordowska P, Konwerska A, Celichowski P, Kranc W, Kulus J, et al. New molecular markers involved in regulation of ovarian granulosa cell morphogenesis, development and differentiation during short-term primary in vitro culture—transcriptomic and histochemical study based on ovaries and individual separated follicles. Int J Mol Sci. 2019;20(16):3966.

    Article  CAS  PubMed Central  Google Scholar 

  38. Armstrong DT, Xia P, De Gannes G, Tekpetey FR, Khamsi F. Differential effects of insulin-like growth factor-I and follicle-stimulating hormone on proliferation and differentiation of bovine cumulus cells and granulosa cells. Biol Reprod. 1996;54(2):331–8.

    Article  CAS  PubMed  Google Scholar 

  39. Hunde AR. Transcriptome dynamics and molecular cross-talk between bovine oocyte and its companion cumulus cells. Inst fürTierwiss. 2010

  40. Herrero J, Tejera A, Albert C, Vidal C, de los Santos MJ, Meseguer M. A time to look back analysis of morphokinetic characteristics of human embryo development. Fertil Steril. 2013;100(6):1602-9.e4.

    Article  PubMed  Google Scholar 

  41. Milewski R, Kuć P, Kuczyńska A, Stankiewicz B, Łukaszuk K, Kuczyński W. A predictive model for blastocyst formation based on morphokinetic parameters in time-lapse monitoring of embryo development. J Assist Reprod Genet. 2015;32(4):571–9.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Macaulay AD, Gilbert I, Caballero J, Barreto R, Fournier E, Tossou P, et al. The gametic synapse RNA transfer to the bovine oocyte.Biol Reprod. 2014;91(4):90, 1–12

  43. Russell DL, Gilchrist RB, Brown HM, Thompson JG. Bidirectional communication between cumulus cells and the oocyte: old hands and new players? Theriogenology. 2016;86(1):62–8.

    Article  CAS  PubMed  Google Scholar 

  44. Hand JM, Zhang K, Wang L, Koganti PP, Mastrantoni K, Rajput SK, et al. Discovery of a novel oocyte-specific Krüppel-associated box domain-containing zinc finger protein required for early embryogenesis in cattle. Mech Dev. 2017;144:103–12.

    Article  CAS  PubMed  Google Scholar 

  45. Hand JM. Discovery of a novel oocyte-specific KRAb-containing zinc finger protein required for early embryogenesis in cattle. 2015

  46. Raman RS, Chan PJ, Corselli JU, Patton WC, Jacobson JD, Chan SR, et al. Comet assay of cumulus cell DNA status and the relationship to oocyte fertilization via intracytoplasmic sperm injection. Hum Reprod. 2001;16(5):831–5.

    Article  CAS  PubMed  Google Scholar 

  47. Takada L, Junior AM, Mingoti GZ, Balieiro J, Cipolla-Neto J, Coelho L. Effect of melatonin on DNA damage of bovine cumulus cells during in vitro maturation (IVM) and on in vitro embryo development. Res Vet Sci. 2012;92(1):124–7.

    Article  CAS  PubMed  Google Scholar 

  48. Barcena P, López-Fernández C, García-Ochoa C, Obradors A, Vernaeve V, Gosálvez J, et al. Detection of DNA damage in cumulus cells using a chromatin dispersion assay. Syst Biol Reprod Med. 2015;61(5):277–85.

    CAS  PubMed  Google Scholar 

  49. Russo G, Tosti E, El Mouatassim S, Benkhalifa M. Expression profile of genes coding for DNA repair in human oocytes using pangenomic microarrays, with a special focus on ROS linked decays. J Assist Reprod Genet. 2007;24(11):513–20.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhang Q-Y, Chen X-Q, Liu X-C, Wu D-M. PKMYT1 promotes gastric cancer cell proliferation and apoptosis resistance. Onco Targets Ther. 2020;13:7747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Burrows AE, Sceurman BK, Kosinski ME, Richie CT, Sadler PL, Schumacher JM, et al. The C. elegans Myt1 ortholog is required for the proper timing of oocyte maturation. Development. 2006;133(4):697–709.

    Article  CAS  PubMed  Google Scholar 

  52. Oh JS, Han SJ, Conti M. Wee1B, Myt1, and Cdc25 function in distinct compartments of the mouse oocyte to control meiotic resumption. J Cell Biol. 2010;188(2):199–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nebreda AR, Ferby I. Regulation of the meiotic cell cycle in oocytes. Curr Opin Cell Biol. 2000;12(6):666–75.

    Article  CAS  PubMed  Google Scholar 

  54. Canosa S, Bergandi L, Macrì C, Charrier L, Paschero C, Carosso A, et al. Morphokinetic analysis of cleavage stage embryos and assessment of specific gene expression in cumulus cells independently predict human embryo development to expanded blastocyst: a preliminary study. J Assist Reprod Genet. 2020

  55. Kirkegaard K, Kesmodel US, Hindkjær JJ, Ingerslev HJ. Time-lapse parameters as predictors of blastocyst development and pregnancy outcome in embryos from good prognosis patients: a prospective cohort study. Hum Reprod. 2013;28(10):2643–51.

    Article  CAS  PubMed  Google Scholar 

  56. Cruz M, Garrido N, Herrero J, Pérez-Cano I, Muñoz M, Meseguer M. Timing of cell division in human cleavage-stage embryos is linked with blastocyst formation and quality. Reprod Biomed Online. 2012;25(4):371–81.

    Article  PubMed  Google Scholar 

  57. Bunel A, Jorssen E, Merckx E, Leroy J, Bols P, Sirard M. Individual bovine in vitro embryo production and cumulus cell transcriptomic analysis to distinguish cumulus-oocyte complexes with high or low developmental potential. Theriogenology. 2015;83(2):228–37.

    Article  CAS  PubMed  Google Scholar 

  58. Tabibnejad N, Sheikhha MH, Ghasemi N, Fesahat F, Soleimani M, Aflatoonian A. Association between early embryo morphokinetics plus cumulus cell gene expression and assisted reproduction outcomes in polycystic ovary syndrome women. Reprod Biomed Online. 2019;38(2):139–51.

    Article  PubMed  Google Scholar 

  59. Amjadi F, Aflatoonian R, Javanmard SH, Saifi B, Ashrafi M, Mehdizadeh M. Apolipoprotein A1 as a novel antiimplantation biomarker in polycystic ovary syndrome: a case-control study. Journal of research in medical sciences: the official journal of Isfahan University of Medical Sciences. 2015;20(11):1039.

    Article  CAS  Google Scholar 

  60. Tang F, He Z, Lei H, Chen Y, Lu Z, Zeng G, et al. Identification of differentially expressed genes and biological pathways in bladder cancer. Molecular medicine reports. 2018;17(5):6425–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Ribas-Maynou J, García-Peiró A, Fernández-Encinas A, Abad C, Amengual M, Prada E, et al. Comprehensive analysis of sperm DNA fragmentation by five different assays: TUNEL assay, SCSA, SCD test and alkaline and neutral Comet assay. Andrology. 2013;1(5):715–22.

    Article  CAS  PubMed  Google Scholar 

  62. Saskova A, Solc P, Baran V, Kubelka M, Schultz RM, Motlik J. Aurora kinase A controls meiosis I progression in mouse oocytes. Cell cycle. 2008;7(15):2368–76.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Iran University of Medical Sciences (IUMS), Tehran, Iran, for their cooperation throughout the period of study.

Funding

This study was financed by the co-operative of Iran University of Medical Sciences (grant no. 32819) and Iran National Science Foundation (grant no. 95849005).

Author information

Authors and Affiliations

Authors

Contributions

MM: project administration, designed the study, and reviewed the manuscript. AG: performed the experiments and wrote the paper. FSA: designed the study and reviewed the manuscript. MHN: supervised and reviewed and editing the manuscript. ER: analyzed data.

Corresponding author

Correspondence to Mehdi Mehdizadeh.

Ethics declarations

Ethics Approval

The study approval was obtained from the Ethics Committee of Iran University of Medical Science (reference number: IR.IUMS.FMD.REC.1397.148). Also, samples were collected from patients in Isfahan Fertility and Infertility Center.

Consent to Participate

Informed consent was obtained from all participants included in the study.

Consent for Publication

All authors consent to publication of this study.

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 265 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govahi, A., Amjadi, F., Nasr-Esfahani, MH. et al. Accompaniment of Time-Lapse Parameters and Cumulus Cell RNA-Sequencing in Embryo Evaluation. Reprod. Sci. 29, 395–409 (2022). https://doi.org/10.1007/s43032-021-00748-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-021-00748-3

Keywords

Navigation