Skip to main content
Log in

Expression profile of genes coding for DNA repair in human oocytes using pangenomic microarrays, with a special focus on ROS linked decays

  • Original Papers
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To determine the level of expression for mRNAs that regulate DNA repair activity in oocytes at the germinal vesicle (GV) stage. Reactive oxygen species (ROS) have been shown to play a major role in the appearance of deleterious DNA decays, and this study focuses on the repair of damage linked to decay caused by the action of ROS. The oocyte needs a mechanism for repairing DNA decays in the early preimplantation embryo before the onset of genomic activation, since in the absence of repair, residual DNA damage would lead to either apoptosis or tolerance. Tolerance of DNA damage is a source of potential mutations.

Method

GV oocytes were selected for this study, both for the ethical reason that they are unsuitable for patient treatment, and because no transcription takes place during the period from GV to MII and then prior to genomic activation. The GV oocyte is therefore a good model for looking at DNA during the first cleavages of early preimplantation development. Six cohorts of GV oocytes were pooled for extraction of mRNA; the DNA was analysed using Affimetrix HG-UG133 Plus 2, containing 54,675 probe sets; spike and housekeeping genes were also added as internal controls.

Results

In GV oocytes, DNA repair pathways for oxidized bases are redundant. One step repair procedure (OSR), BER (base excision repair), MMR (mismatch repair) and NER (Nucleotide excision repair) are present. All the recognition proteins are also present. The chromatin assembly factors necessary for the maintenance of genomic stability are highly expressed.

Conclusion

Gene expression analysis shows that the oocyte does not allow a high level of tolerance for DNA decays. This regulatory mechanism should avoid transmitting mutations into the next generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Evenson DP, Larson KL, Jost LK. Sperm chromatin structure assay: its clinical use for detecting sperm DNA fragmentation in male infertility and comparisons with other techniques. J Androl 2002;23:25–43.

    PubMed  Google Scholar 

  2. Henkel R, Hajimohammad M, Stalf TH, Hoogendijk C, Mehnert C, Menkveld R, et al. Influence of deoxyribonucleic acid damage on fertilization and pregnancy. Fertil Steril 2004;81:965–72.

    Article  PubMed  CAS  Google Scholar 

  3. Kodama H, Yamaguchi R, Fukuda J, Kasai H, Tanaka T. Increased oxidative deoxyribonucleic acid damage in the spermatozoa of infertile male patients. Fertil Steril 1997;68:519–24.

    Article  PubMed  CAS  Google Scholar 

  4. Lopes S, Sun J, Jurisicova, Meriano J, Casper RF. Semen deoxyribonucleic acid fragmentation is increased in poor quality semen samples and correlates with failed fertilisation in intracytoplasmic sperm injection. Fertil Steril 1998a;69:528–32.

    Article  PubMed  CAS  Google Scholar 

  5. Lopes S, Jurisicova A, Sun JG, Meriano J, Casper RF (1998b) Reactive oxygen species: potential cause for DNA fragmentation in human spermatozoa. Hum Reprod 1998b;13:896–900.

    Article  PubMed  CAS  Google Scholar 

  6. Hsieh MM, Hegde V, Kelley MR, Deutsch WA. Activation of APE/Ref-1 redox activity is mediated by reactive oxygen species and PKC phosphorylation. Nucleic Acids Res 2001;29:3116–22.

    Article  PubMed  CAS  Google Scholar 

  7. Xu YJ, Kim Y. Demple B Excision of c-4′-oxidised deoxyribose lesions from double-stranded DNA by human apurinic/apyrimidic endonuclease (Ape1 protein) and DNA polymerase beta. J Biol Chem 1998;273:28837–44.

    Article  PubMed  CAS  Google Scholar 

  8. Badouard C, Ménézo Y, Panteix G, Ravanat JL, Douki T, Cadet J, et al. Determination of new types of DNA lesions in human sperm. Zygote 2007;15 in press

  9. Rodriquez S, Goyanes V, Sequrelles E, Blasco M, Gosálvez J, Fernández JL. Critically short telomeres are associated with sperm DNA fragmentation. Fertil Steril 2005;84:843–5.

    Article  Google Scholar 

  10. Guerin P, Matillon C, Bleau G, Levy R, Menezo Y. Impact of sperm DNA fragmentation on ART outcome. Gynecol Obstet Fertil 2005;33:665–8.

    Article  PubMed  CAS  Google Scholar 

  11. Baretto G, Schaffer A, Marholg G, Stach D, Swaminathan SK, Handa V, et al. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 2007;445:671–67.

    Google Scholar 

  12. Wood RD, Mitchell M, Sgouros JG, Lindahl T. Human DNA repair genes. Science 2001;291:1284–9.

    Article  PubMed  CAS  Google Scholar 

  13. Bessho T, Tano K, Kasai H, Ohtsuka E, Nishimura S. Evidence for two DNA repair enzymes for 8-hydroxyguanosine (7,8 dihydro-8-oxoguanine) in human cells. J Biol Chem 1996;268:19416–21.

    Google Scholar 

  14. Zeng F, Baldwin DA, Shultz RA. Transcript profiling during preimplantation mouse development. Dev Biol 2004;272:483–96.

    Article  PubMed  CAS  Google Scholar 

  15. Kocabas MA, Crosby J, Ross PJ, Otu HH, Beyhan Z, Can H, et al. The transcriptome of human oocytes. Proc Natl Acad Sci 2006;103:14027–32.

    Article  PubMed  CAS  Google Scholar 

  16. Tarin JJ, Perez-Albala S, Cano A. Oral antioxidants counteract the negative effects of female aging on oocyte quantity and quality in the mouse. Mol Reprod Dev 2002;61:385–97.

    Article  PubMed  CAS  Google Scholar 

  17. El Mouatassim S, Guerin P, Ménézo Y. Expression of genes encoding antioxidant enzymes in human and mouse oocytes during final stages of maturation. Mol Hum Reprod 1999;5:720–5.

    Article  PubMed  CAS  Google Scholar 

  18. Braude P, Bolton V, Moore S. Human gene expression first occurs between the four-and eight-cell stage of preimplantation development. Nature 1988;332:459–61.

    Article  PubMed  CAS  Google Scholar 

  19. Telford NA, Watson AJ, Schultz GA. Transition from maternal to embryonic control in early mammalian development: a comparison of several species. Mol Reprod Dev 1990;26:90–100.

    Article  PubMed  CAS  Google Scholar 

  20. Wells D, Bermudez MG, Steuerwald N, Thornhill AR, Walker DL, Malter H, et al. Expression of genes regulating chromosome segregation, the cell cycle and apoptosis during human preimplantation development. Human Reprod 2005;20:1339–48.

    Article  CAS  Google Scholar 

  21. Wood RD, Mitchell M, Lindahl T. Human DNA repair genes. Mutat Res 2005;577:275–83.

    PubMed  CAS  Google Scholar 

  22. Cline SD, Hanawalt PC. Who’s on first in the cellular response to DNA damage? Nat Rev Mol Cell Biol 2003;4:361–72.

    Article  PubMed  CAS  Google Scholar 

  23. Kelley MR, Parsons SH. Redox regulation of the DNA repair functions of the human AP endonuclease Ape1/ref-1. Antioxid Redox Signal 2001;3:671–83.

    Article  PubMed  CAS  Google Scholar 

  24. Hedley D, Pintilie M, Woo J, Nicklee T, Morrison A, Birle D, et al. Up-regulation of the redox mediators thioredoxin and apurinic/apyrimidinic excision (APE)/Ref-1 in hypoxic microregions of invasive cervical carcinomas, mapped using multispectral, wide-field fluorescence image analysis. Am J Pathol 2004;164:557–65.

    PubMed  CAS  Google Scholar 

  25. Mazurek A, Berardini M, Fishel R. Activation of human MutS homologs by 8-oxo-guanine DNA damage. J Biol Chem 2002;227:8260–6.

    Article  Google Scholar 

  26. Menezo Y, Khatchadourian Ch, Gharrib A, Hamidi J, Greenland T, Sarda N. Regulation of S-adenosyl methionine synthesis in the mouse embryo. Life Sci 1989;44:1601–9.

    Article  PubMed  CAS  Google Scholar 

  27. Seli E, Lalioti MD, Flaherty SM, Sakkas D, Terzi N, Steitz JA. An embryonic poly(A)-binding protein (ePAB) is expressed in mouse oocytes and early preimplantation embryos. Proc Natl Acad Sci U S A. 2005;102:367–72.

    Article  PubMed  CAS  Google Scholar 

  28. Jurisicova A, Antenos M, Varmusa S, Tilly JL, Casper RF. Expression of apoptosis-related genes during human preimplantation embryo development: potential roles for the harakiri gene product and caspase-3 in blastomere fragmentation. Mol Hum Reprod 2003;9:133–41.

    Article  PubMed  CAS  Google Scholar 

  29. Zenzes MT. Smoking and reproduction: gene damage to human gametes and embryos. Hum Reprod Update 2000;6:122–31.

    Article  CAS  Google Scholar 

  30. Aitken RJ, Krausz C. Oxidative stress, DNA damage and the Y chromosome. Reproduction 2001;122:497–506.

    Article  PubMed  CAS  Google Scholar 

  31. Thompson BJ, Shang CA, Waters MJ. Identification of genes induced by growth hormone in rat liver using cDNA. Endocrinology 2000;141:4321–4.

    Article  PubMed  CAS  Google Scholar 

  32. Menezo Y, El Mouatassim S, Chavrier M, Servy EJ, Nicolet B. Human oocytes and preimplantation embryos express mRNA for Growth Hormone Receptor (GhR*). Zygote 2003;11:293–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We would like to thank Dr Martine Dumont and Dr Anne Marie Junca for the generous gift of GV oocytes. Dr Soularue (Partnerchips) is acknowledged for his help in the realization of the project.

This work was sponsored by Organon France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Jr Menezo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menezo, Y.J., Russo, G., Tosti, E. et al. Expression profile of genes coding for DNA repair in human oocytes using pangenomic microarrays, with a special focus on ROS linked decays. J Assist Reprod Genet 24, 513–520 (2007). https://doi.org/10.1007/s10815-007-9167-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-007-9167-0

Keywords

Navigation